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A Additional Descriptions of the Data

A.1 Data Visualization

To visualize how behavior differs depending on ∆RD, we put the sessions into five
groups: δ < δSPE, δSPE < δ < δRD, 0 < ∆RD < 0.15, 0.15 < ∆RD < 0.3, and
0.3 < ∆RD.

Here the first 2 groups were motivated by theory, while the subdivision of the
treatments with ∆RD > 0 was based on the data. The thresholds and relative
frequencies of ∆RD can be seen in figure 1.

Figure 1: Distribution of ∆RD for δ > δSPE

Figure 2 shows the CDF for average supergame length across the sessions.
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Figure 2: CDF of average realized supergame length for the different sessions in the
data. The figure is truncated at an average length of 20 rounds.

Figure 3 shows the evolution of cooperation during the first 10 supergames,
restricted to sessions of at least 10 supergames (134 of 161), and in figure 4 the first
20 supergames restricted to the sessions that included at least 20 supergames (93 of
161).
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Figure 3: Cooperation in the initial round over the 10 first supergames.

Figure 4: Cooperation in the initial round over the 20 first supergames.
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In figure 5 and 6 we show the corresponding plots but for different memory-1
histories.

Figure 5: Average cooperation after different memory-1 histories for the first 10
supergames.
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Figure 6: Average cooperation after different memory-1 histories for the first 20
supergames.

Behavior at non-initial memory-1 histories is less variable than behavior at initial
histories, both between different values of ∆RD and over the course of the experimental
sessions. 1

This can also be seen in Table 7, which shows average cooperation rates at each
1-period history for different rounds and ∆RD. The split at ∆RD = 0.1333 was chosen
to get as even a split as possible. We see that initial and total level of cooperation
varies much more with ∆RD than at any of the non-initial histories.

1In contrast to the initial round, different players face different distributions of the other memory-1
histories, and because these differences are not exogenous, there may be selection effects. Furthermore,
some memory-1 histories are uncommon in certain treatments, e.g. there are few CC in games where
the average cooperation rate is low.
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All rounds with ∆RD ≤ 0.1333

hist Avg C n
CC 95.0 13,228
CD 28.1 7,770
DC 32.7 7,770
DD 3.9 46,500
Initial 32.2 39,606
Total 27.7 114,874

All rounds with ∆RD > 0.1333

hist Avg C n
CC 97.1 46,208
CD 32.7 8,934
DC 33.7 8,934
DD 7.4 28,124
Initial 70.4 25,224
Total 60.1 117,424

Second round with ∆RD ≤ 0.1333

hist Avg C n
CC 92.0 3,282
CD 25.5 3,968
DC 27.8 3,968
DD 6.0 10,898

Second round with ∆RD > 0.1333

hist Avg C n
CC 96.3 9,696
CD 27.5 3,573
DC 30.4 3,574
DD 15.1 2,133

Round 3 and higher with ∆RD ≤ 0.1333

hist Avg C n
CC 96.0 9,946
CD 30.9 3,802
DC 37.8 3,802
DD 3.3 35,602

All rounds with ∆RD > 0.1333

hist Avg C n
CC 97.3 36,512
CD 36.1 5,361
DC 35.9 5,360
DD 6.8 25,991

Figure 7: Average behavior by round and ∆RD

A.2 Importance of Initial-Round Play

If the differences in average cooperation between different treatments are driven
primarily by the initial round behavior, then average cooperation after the initial
round should be primarily determined by the outcome of the initial round and
otherwise similar across treatments. To show this, we compare the following three
regressions. The outcome variable is the average cooperation by a participant in a
supergame in the rounds following the initial round, e.g., if 4 rounds were played in
that particular supergame, we calculate the average cooperation by that participant
in rounds 2, 3, and 4. The first regression conditions only on the outcome of the
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initial round. The second adds game parameters (δ, g, l, and ∆RD), and the last uses
only the game parameters and not the initial round.

Table 1: Rest of supergame average cooperation conditional on initial round outcome.

(1) (2) (3)
initial = CD −0.635∗∗∗ (0.004) −0.619∗∗∗ (0.004)
initial = DC −0.638∗∗∗ (0.004) −0.622∗∗∗ (0.004)
initial = DD −0.832∗∗∗ (0.004) −0.788∗∗∗ (0.004)
g 0.013∗∗∗ (0.005) −0.011∗ (0.006)
l −0.013∗∗∗ (0.003) −0.039∗∗∗ (0.004)
δ 0.002 (0.030) −0.028 (0.042)
∆RD 0.169∗∗∗ (0.030) 0.813∗∗∗ (0.041)
Constant 0.906∗∗∗ (0.003) 0.867∗∗∗ (0.013) 0.391∗∗∗ (0.018)
Observations 41,080 41,080 41,080
R2 0.582 0.586 0.187
Adjusted R2 0.582 0.586 0.187

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Most game parameters are statistically significant, but they explain almost no
extra variance: The difference in R2 between the model with and without game
parameters is less than 0.01. In contrast, removing the outcome of the initial round
lowers the R2 to 0.0187. This is also true for second-round cooperation instead of
average cooperation in the rest of the supergame.

Table 3 presents a similar regression for non-initial rounds. The outcome of the
previous round is the main determinant of behavior; including ∆RD, the round, or the
supergame, plus interactions of any of these, only increases R2 from 0.686 to 0.688.
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Table 2: Second round average cooperation conditional on initial round outcome.

(1) (2) (3)
initial = CD −0.688∗∗∗ (0.005) −0.677∗∗∗ (0.005)
initial = DC −0.662∗∗∗ (0.005) −0.651∗∗∗ (0.005)
initial = DD −0.877∗∗∗ (0.004) −0.843∗∗∗ (0.005)
g 0.005 (0.005) −0.020∗∗∗ (0.007)
l −0.021∗∗∗ (0.003) −0.048∗∗∗ (0.005)
δ 0.143∗∗∗ (0.034) 0.111∗∗ (0.046)
∆RD 0.044 (0.033) 0.733∗∗∗ (0.045)
Constant 0.952∗∗∗ (0.003) 0.850∗∗∗ (0.015) 0.341∗∗∗ (0.020)
Observations 41,080 41,080 41,080
R2 0.551 0.554 0.166
Adjusted R2 0.551 0.554 0.166

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3: Non-initial round cooperation conditional on previous round history

(1) (2) (3)
hist = CD −0.660∗∗∗ (0.002) −0.571∗∗∗ (0.021)
hist = DC −0.634∗∗∗ (0.002) −0.550∗∗∗ (0.021)
hist = DD −0.914∗∗∗ (0.002) −0.770∗∗∗ (0.017)
∆RD 0.093∗∗∗ (0.006) 0.822∗∗∗ (0.009)
rd 0.093∗∗∗ (0.017) 0.083∗∗∗ (0.004)
round 0.016∗∗∗ (0.003) 0.002∗∗∗ (0.0002)
supergame 0.004∗∗∗ (0.001) 0.003∗∗∗ (0.0001)
Constant 0.966∗∗∗ (0.001) 0.815∗∗∗ (0.016) 0.181∗∗∗ (0.003)
Interactions N Y Y
Observations 167,468 167,468 167,468
R2 0.686 0.688 0.142
Adjusted R2 0.686 0.688 0.142
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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B The Pure Strategy Belief Learning Model

Here we outline the belief learning model from Dal Bó and Fréchette (2011) and our
across-treatment generalization. Individuals are assumed to choose between TFT or
AllD at the beginning of each supergame. The decision is made via a logit best reply
based on the individual’s beliefs about how likely a partner is to play TFT or AllD,
and the implied expected payoffs.

The beliefs are tracked by the two values BC
is and BD

is , where i is the individual and
s is the supergame. Since only two pure strategies are considered, and they prescribe
different actions in the initial round of a supergame, the initial-round actions reveal
the partner’s strategy. The beliefs are updated according to

Ba
is+1 = θBa

is + 1{a−i(s) = a}

where a−i(s) denotes the initial round action taken by the partner of individual i in
supergame s, and θ captures recency in the beliefs. Given those two belief values, the
belief that the partner will play TFT in supergame s is given by BC

is/(BC
is +BD

is ).
Let uσ(TFT), uσ(AllD) denote the expected payoff from following strategy σ if

the partner is playing TFT and AllD respectively. The expected value of each choice
is given by

Ua
is = BC

is

BC
is +BD

is

uσ(TFT ) + BD
is

BC
is +BD

is

uσ(AllD) + λisε
a
is

where εais follows a type I extreme value distribution λis = λFi + (φi)sλVi . is a
sensitivity parameter. This gives the following probability of subject i playing a in
the initial round of supergame s, and thereafter following the according pure strategy,

pais =
exp

(
1
λis
Ua
is

)
exp

(
1
λis
UC
is

)
+ exp

(
1
λis
UD
is

) .
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B.1 Trembles

Here we modify the Dal Bó and Fréchette, 2011 learning model by supposing that
individual i takes the prescribed action with probability 1− εi. Otherwise, the model
remains the same, including using the theoretical values for the value of TFT against
TFT, etc.

C Evaluation of the Procedure on Simulated Data

To test our estimation approach, we simulate the data using three different models:
IRL-SG, IRL-SG with noisy individual parameters drawn from a normal distribution,
and the pure strategy reinforcement learning model. The parameters for each model
are taken as the average of our parameter estimates on the actual data. When we add
noise to the IRL-SG, we draw each individual’s parameters from a normal distribution
where α ∼ N(−0.268, 0.5), β ∼ N(1.291, 1), λ ∼ N(0.182, 0.1), pCC ∼ N(0.995, 0.1),
pCD/DC ∼ N(0.355, 0.1) and pCC ∼ N(0.012, 0.1). Here the means are the estimated
parameters from the main analysis, and the standard deviations were set ad-hoc to
what we thought were reasonable and quite large sizes. The sampled probabilities
are then cut-off to be in the interval (0, 1).

It is not computationally feasible to replicate the complete analysis a large number
of times, as each iteration of the analysis takes a couple of days. Instead, we generate
10 different data sets for each of the three different assumptions we consider. Each
session is then simulated with an actual sequence of supergame lengths, with 16
participants in each session. On each of these 10 data sets we perform a 10-fold cross-
validation with the two models: IRL-SG and pure strategy reinforcement learning.
We then sample prediction errors, with replacement, of the same size as the original
data to get a sense of how often we would correctly infer the underlying model. On
these samples, we perform the same bootstrapped pairwise test to see if one of the
models is significantly better. This sampling procedure is iterated a 1000 times, and
the share of correct and incorrect inferences is calculated.
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Data generating model
Estimated model IRL-SG IRL-SG with noise Pure reinf.
IRL-SG 0.0101 0.0133 0.0077

(0.0013) (0.0017) (0.0008)
Pure reinf. learning 0.0156 0.0166 0.0048

(0.0017) (0.0019) (0.0008)
Share correct difference 100.0% 99.2% 100.0%
Share correct significant 99.9% 70.7% 97.8%
Share incorrect significant 0.0% 0.0% 0.0%

Table 4: Comparison of the IRL-SG and the pure strategy reinforcement learning
model estimated on populations simulated under different assumptions.

Table 4 shows the MSE of the IRL-SG and the pure strategy reinforcement learning
model evaluated on the three different simulated data sets. The standard deviations
show the variation of MSE across samples. Below are three rows that show how
often the analysis draws the right conclusion. The first row indicates how often the
difference in MSE goes in the correct direction, which is almost always the case. The
second row shows how often the difference is both in the right direction and significant.
The last row shows how often the wrong model is identified as significantly better.
The wrong model is not significantly better in any of our samples. For the models
without individual noise, the correct model is almost always significantly better. For
the IRL-SG with individual level noise in the parameters, the IRL-SG is significantly
better in 70.7% of the cases, and the pure strategy reinforcement learning model is
almost never better, and never significantly so. This suggests that our estimation
and evaluation approach should be able to correctly identify the underlying model,
with low risk of drawing the wrong conclusion.
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D One Step Ahead Prediction and Maximum Like-
lihood Estimation

We here consider the question of how well we can predict the next action taken by
a participant given their actions so far. If each participant uses a fixed strategy
or learning rule, and the relative shares in the population are known, it should be
possible to accurately predict the next action a given individual will take at a given
history. Thus, following the literature, we assume that there are a finite number of
different “strategic types” (i.e. strategies or learning rules) used in the population,
and estimate the parameters and the shares of these strategies by maximum likelihood.
We then see how well the different types match the individual’s behavior up to that
point, and then make the corresponding prediction.

We consider the pure strategy mixture model, IRL-SG, learning with memory-1,
and learning at all h, and compare their performance both to a naive benchmark that
predicts the previous action taken by the individual, and to the predictions made by
a gradient boosting tree.

We focus on out-of-sample predictions. This allows us to compare models of
different complexities, because overly complex models may be penalized by cross-
validation.

Several interesting conclusions arise from this exercise. First, in contrast to the
problem of predicting the populations behavior, explicitly modeling heterogeneity
does improve predictions here. Moreover, as above, learning allows us to make
better out-of-sample predictions. Finally, as in past work we see no evidence of the
participants using strategies of memory greater than 1.

D.1 The General Prediction Problem

Consider the complete data set of observations

D = {(hi(t), ai(t))|i ∈ I, t ∈ T (i)} ,
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each pair consisting of the history and the action taken for individual i ∈ I, in time
period t, where T (i) denotes all the rounds played by individual i, and we track the
game parameters Γi as part of the history. The action taken ai(t) is 1 for cooperation
and −1 for defection.

A predictive model is a function m : H → [0, 1], where H is the space of all
individual histories in an experimental session. This function predicts the probability
that an individual with a given history cooperates. A model comes with a set of
parameters θ and we write

m(hi(t)|θ) = âi(t)

to the denote model m’s predicted probability of cooperation given history hi(t).
Two different measures of predictive performance are used, prediction loss and

accuracy. The prediction loss is based on the cross-entropy of the predicted probability
of the taken action. For a data set D′ ⊂ D, the average prediction loss is given by

L(m|D′, θ) = −1
|D′|

∑
(hi(t),ai(t))∈D′

log(m(hi(t)|θ))·1{ai(t) = 1}+log(1−m(hi(t)|θ))·1{ai(t) = −1}.

or if we simplify the notation, by letting m and θ be implicit, with

L(D′) = −1
|D′|

∑
(hisr,yisr)∈D′

log(ŷisr) · yisr + log(1− ŷisr) · (1− yisr).

The models are always optimized with respect to the prediction loss, however, it
is also interesting to look at the accuracy of the predictions. The accuracy is the
share of observations where the taken action was predicted to be the most likely, i.e.

Acc(m|D′, θ) = 1
|D′|

∑
(hi(t),ai(t))∈D′

(
1{ai(t) = 1} · 1{m(hi(t)|θ) ≥ 0.5}

+ 1{ai(t) = −1} · 1{m(hi(t)|θ) < 0.5}
)
.
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D.2 Finite Mixture models

When estimating the models, we assume that the population can be divided into
different types, where individuals of the same type behave in the same way. Depending
on the model, these types are parameterized in different ways. The learning models
presented are the same ones used in the main text, with the difference that experience
at a given supergame is calculated using the actual observed data up to that supergame,
and not by simulation.

Pure Strategy Model In this model we assume that each type σj follows a pure
strategy with a fixed mistake probability εj. If we let ωj : H → {0, 1} denote a
pure strategy, e.g., Tit for Tat or Grim, a type can be described by a tuple (ωj, εj).
We start with an exogenous list of 11 different pure strategies, taken from the pure
strategies estimated to have positive share in Fudenberg, Rand, and Dreber, 2012 2,
and estimate the share φj and mistake probability εj and for each such pure strategy.
The mistake probabilities εj and the shares φj are explicitly estimated, while the 11
available pure strategies remain fixed. In the standard SFEM a common error rate ε
is used, we relax this assumption in order to give the pure strategy model a better
chance of performing well.

Estimating any finite mixture model gives us a set of types and their relative
shares. To make a prediction of ai(t) based on hi(t), we first calculate the probability
of hi(t) under the different types. For simplicity, we represent the different types with
σj for each type j.

Pr(hi(t)|σj) =
∏
τ<t

σj(hi(t))1{ai(t)=1} ·
(
1− σj(hi(t))

)
1{ai(t)=−1}

.

Given the estimated shares φ the conditional probability of individual i being of
type j at time t is given by

2While Fudenberg, Rand, and Dreber, 2012 studies interactions with exogenous noise, these 11
strategies contain those strategies often found to be used in games without noise e.g. Dal Bó and
Fréchette, 2018
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Pr(σj|hi(t)) = φjPr(hi(t)|σj)∑
l φlPr(hi(t)|σl)

.

Given these estimated probabilities, the prediction of model m is given by

m(hi(t)) =
∑
j

σj(hi(t))Pr(σj|hi(t)).

D.3 Evaluating the Models

To evaluate out-of-sample performance we again use 10-fold cross-validation. Because
we are now predicting individual and not aggregate play, here the partitions are at
the level of individuals, so that each individual is in exactly one test set. The splits
are balanced over the treatments so that roughly 10% of the participants from each
treatment are in each fold. For each such partition k, we find the parameters θtraink

with the smallest prediction loss on the training set,

θtraink = arg min
θ∈Θ
L(m|Dtrain

k , θ)

and calculate the prediction loss on the test set, L(m|Dtest
k , θtraink ). The prediction

loss from the 10-fold cross-validation that will be reported, and used to compare the
models, is given by averaging over all such splits,

PredictionLoss(m|D,K) = 1
K

K∑
k=1
L(m|Dtest

k , θtraink )

and the accuracy is similarly given by

Accuracy(m|D,K) = 1
K

K∑
k=1

Acc(m|Dtest
k , θtraink ).

There is no canonical way to capture across-treatment differences in the pure
strategy model. Instead, we follow the literature and make a separate estimation for
each treatment. For the other models, we use a single finite mixture model for all
treatments.
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D.4 List of Pure Strategies Considered for Predicting the
Next Action

Strategy Description
Always Cooperate Always play C.
Always Defect Always play D.
Tit-for-Tat Play C unless partner played D the last round.
Tit-for-2-Tats Play C unless partner played D the last 2 rounds.
Tit-for-3-Tats Play C unless partner played D the last 3 rounds.
Exploitative Tit-for-Tat Play D in first round, then play TFT.
2-Tits-for-1-Tat Play C unless partner played D the last round

and punish for 2 rounds.
2-Tits-for-2-Tat Play C unless partner played D the last 2 rounds

and punish for 2 rounds.
Grim Play C until either player plays D, then defect forever.
Lenient Grim 2 Play C until two consecutive rounds occur in which

either player played D, then play D forever.
Lenient Grim 3 Play C until three consecutive rounds occur in which

either player played D, then play D forever.

Table 5: List of pure strategies considered for predicting the next action played.

D.5 Results

Tble 6 reports the prediction errors of the different models. In this and later tables
of this section, we include two additional models, Memory-1 and flexible memory-1.
These two models are similar to the learning models, but without learning, essentially
setting λ = 0. In the memory-1 model, we simply estimate a mixture of memory-1
strategies, that are the same in all treatments. In the flexible memory-1 model, the
cooperation probabilities at different memory-1 histories depend on ∆RD.
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Model N types Loss Accuracy Relative Accuracy
Naive 0.429 84.6%
Pure 0.311 88.2% 23.0%
Memory-1 1 0.389 79.7% -32.3%

2 0.315 87.7% 20.2%
3 0.298 87.2% 16.7%

Flexible memory-1 1 0.36 83.8% -5.8%
2 0.308 87.4% 17.7%
3 0.294 87.6% 19.1%

IRL-SG 1 0.321 87.6% 18.9%
2 0.297 88.0% 22.1%
3 0.288 88.3% 23.9%

Initial round learning 1 0.321 87.6% 18.9%
with memory-1 2 0.292 88.5% 25.1%

3 0.282 88.4% 24.5%
Initial round learning 1 0.319 87.6% 18.9%
with flexible memory-1 2 0.293 88.0% 22.0%

3 0.28 88.4% 24.3%
Learning at all memory-1 1 0.322 87.5% 18.6%

2 0.283 88.3% 23.5%
3 0.28 88.5% 25.2%

GBT with memory-1 0.225 90.8% 40.2%
GBT with memory-3 0.222 90.9% 41.0%

Table 6: out-of-sample prediction errors.

As we see, a single type of the IRL-SG performs only slightly worse than fitting
11 different pure strategy types on each treatment. Allowing for heterogeneity in
the learning model makes it slightly better than the pure strategies. The further
improvement from allowing any memory-1 strategy is small, and little is gained by
extending to flexible memory-1 behavior that adjusts to ∆RD or extending learning
to all h.

We also see that including learning increases performance compared to the models
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without learning. Furthermore, when learning is included, the gains from allowing
type heterogeneity are much more modest, suggesting that learning itself captures
much of the observed heterogeneity in the data.

D.6 Maximum Likelihoods

Our analysis of the one-step-ahead prediction problem focuses on the prediction
errors of the next action taken by individuals, since this allows for straightforward
comparisons between models of different complexities. However, since it is more
common in the literature to consider likelihoods instead of prediction errors, we report
these likelihoods here for completeness. For every history hi(t) the behavior of type j
is captured by a function σj : H → [0, 1] that takes a history and assigns a probability
to cooperate. Each model comes with a set of parameters. We will go through the
different models in the following subsections but first, present the general estimation
procedure.

If we let ai(t) ∈ {−1, 1} denote the action taken by individual i at time t, the
likelihood of the observed behavior for participant i if she was of type σj with
parameters is given by

Pri(σj|θj) =
∏

t∈T (i)
σj(hi(t))1{ai(t)=1}(1− σj(hi(t)))1{ai(t)=−1}.

Let θ = (θj)Jj=1 denote the parameters of the different types, and let φ ∈ ∆(J)
denote their relative share. A is then a pair m = (θ, φ), and its likelihood is

L (m|θ, φ, I) =
∑
i∈I

log
 J∑
j=1

φjPri(σj|θj)
 .

The model is then estimated by maximum likelihood.
Our main learning model only has six parameters per type, and these six pa-

rameters are the same across treatments. In comparison, the pure strategy model
incorporates 11 different pure strategies, each with a different mistake probability, and
these are estimated separately for each of the 28 treatments. If we were to directly
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compare the pure strategy model’s loglikelihoods with the initial round learning
model’s loglikelihoods, we would be comparing a model with 736 parameters and one
with 6.

To make the comparison more meaningful, here we consider the models estimated
separately on each treatment as well as on the overall data, and we include BIC
values to compensate for model complexity.

We consider two versions of each model (except the 11-type pure strategy model):
A single type model and mixture of three types.

Table 7 reports the loglikelihoods, estimated using D.6, of the different models,
estimated and evaluated on the full supergames, and table 8 reports this evaluated
on the last third of the supergames in each session.
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Model N types Estimated on Loglikelihood BIC
Pure 11 Each treat -72104 149058
Memory-1 1 Each treat -81023 163201
Memory-1 3 Each treat -65488 134903
Memory-1 1 All treat -89869 179800
Memory-1 3 All treat -67775 135761
Flexible memory-1 1 All treat -82320 164764
Flexible memory-1 3 All treat -66914 134223
IRL-SG 1 Each treat -72676 146507
IRL-SG 3 Each treat -64882 133690
IRL-SG 1 All treat -74559 149193
IRL-SG 3 All treat -66919 134086
Learning with flexible memory-1 1 Each treat -72341 146069
Learning with flexible memory-1 3 Each treat -63109 130836
Learning with flexible memory-1 1 All treat -74121 148378
Learning with flexible memory-1 3 All treat -65242 130917
Learning at all memory-1 1 Each treat -72068 145522
Learning at all memory-1 3 Each treat -62699 130018
Learning at all memory-1 1 All treat -74774 149685
Learning at all memory-1 3 All treat -64984 130400

Table 7: Maximum likelihood log-likelihoods evaluated on the complete set of su-
pergames.

In the literature, it is common to focus on the latter part of the experiment, under
the assumption that behavior then has become more stable.

21



Model N types Estimated on Loglikelihood BIC
Pure 11 Each treat -17153 38449
Memory-1 1 Each treat -22188 45363
Memory-1 3 Each treat -16207 35769
Memory-1 1 All treat -25819 51695
Memory-1 3 All treat -17400 34991
Flexible memory-1 1 All treat -22711 45535
Flexible memory-1 3 All treat -17062 34484
IRL-SG 1 Each treat -19091 39168
IRL-SG 3 Each treat -16158 35672
IRL-SG 1 All treat -19804 39675
IRL-SG 3 All treat -16877 33980
Learning with flexible memory-1 1 Each treat -18916 39016
Learning with flexible memory-1 3 Each treat -15478 34902
Learning with flexible memory-1 1 All treat -19697 39518
Learning with flexible memory-1 3 All treat -16449 33291
Learning at all memory-1 1 Each treat -18775 38734
Learning at all memory-1 3 Each treat -15004 33954
Learning at all memory-1 1 All treat -20005 40134
Learning at all memory-1 3 All treat -15921 32236

Table 8: Maximum likelihood log-likelihoods evaluated on the last third of the
supergames.

As shown in the tables above, the maximum likelihood results on all supergames
and on the last third are both consistent with the primary analysis. According to the
BIC, the best model is the learning model that extends to all memory-1 histories,
while the pure strategies model is one of the worst. We also see that the difference
between the model with learning and semi-grim, and the possible extensions, is quite
small.

We also see that we accurately capture the between-treatment variation within
our models. The loglikelihood is often similar for the models estimated jointly for all
treatments, with logistic functions of ∆RD capturing the variation between treatments,
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and the ones estimated separately for each treatment. And the lowest BIC is given
by such joint estimation.

E Decomposing the Prediction Errors

The analysis in this paper suggests that correctly predicting initial round behavior
is of first order importance in order to predict average cooperation: Conditional on
initial round outcome, there is little variation in behavior across treatments. We here
compare at the prediction error in initial and non-initial rounds.

To get these prediction errors, we take the predictions of the time-path of cooper-
ation from a single 10-fold cross-validation. We then have out-of-sample predictions
for each round of each supergame in all sessions. Given these, we calculate the mean
squared errors and the standard errors of the mean squared errors.

Rounds IRL-SG GBT Lasso
Initial rounds 0.0261 0.0310 0.0296
Non-initial rounds 0.0329 0.0327 0.0334

Table 9: MSE for time-path predictions separated to initial and non-initial rounds.

We see that the differences between the IRL-SG model and ML-methods are
larger for the initial rounds than the non-initial rounds. This suggests that our model
outperforms the ML-methods because it accurately predicts initial round behavior.

To more explicitly test if there is some additional regularity the IRL-SG does
not pick up, we can combine the predictions made by simulating IRL-SG and the
ML-methods. We do so by adding the predictions from the IRL-SG as a feature to be
used by the Lasso and GBT algorithms. We generate the predictions from the IRL-SG
with a single 10-fold cross-validation, and then perform ten 10-fold cross-validations
as in the mean text with those predictions as features. In Table 10 we see that the
best combination (GBT + IRL-SG), has minor and non-significant improvement
over just IRL-SG. This further strengthens the conclusion that IRL-SG captures the
predictable regularity in the data.
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Model MSE
IRL-SG 0.0138
Lasso with IRL-SG 0.0137
GBT with IRL-SG 0.0131

Table 10: Prediction errors from combining IRL-SG and ML methods.

Another way to try to improve the predictions from the IRL-SG and model is to
combine the initial-round predictions from the IRL-SG with other predictions for the
rest of supergame, conditional on the initial-round outcome, similar to the exercise in
Table 1 of the Online Appendix.

For a given supergame of a given session, let ŷ(s) be the IRL-SG model’s predicted
average cooperation in the initial round of that supergame, the predicted share
of CC outcomes in the initial round is ŷ(s)2, the predicted share of DC outcomes
ŷ(s)·(1−ŷ(s)), etc. We can then combine these predicted likelihoods of different initial-
round outcomes with predictions for the rest of supergame cooperation conditional
on the initial round outcome and possibly other information about for example game
parameters or current supergame.

The simplest way to do this is to use the values from model 1 in Table 1, i.e.
average values conditional only on the initial round outcome. These fixed conditionals
are given by ŷCC = 90.7%, ŷCD = 27.1%, ŷDC = 26.8%, ŷDD = 7.3%. In an attempt to
improve those estimates, we can include the features used for the time-path problem,
dropping those features that have to do with the round of a given supergame. These
give us conditional predictions for cooperation rates in the remainder of the supergame,
which we call Lasso conditionals and GBT conditionals. In the Table 11 we report
the results. For computational reasons, we use only a single 10-fold cross-validation
split, and don’t report standard errors. There is, however, no reason to expect these
to be substantially different from the ones from the main analysis.
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Model MSE
IRL-SG with fixed conditionals 0.0139
IRL-SG with Lasso conditionals 0.0137
IRL-SG with GBT conditionals 0.0135

Table 11: Prediction errors from combining initial round predictions from IRL-SG
and conditional predictions for the rest of supergame cooperation.

There are two main takeaways from this table. The first is that the predictive
power of our model indeed comes from its ability to predict initial round behavior.
Using averages conditional on only the initial round outcome gives essentially the same
MSE as using the actual model to predict the non-initial rounds as well. The second
takeaway is that using more complicated predictions for conditional cooperation
rates yields at best a minor improvement. This further reinforces the conclusion that
IRL-SG captures most of the predictable regularity in average cooperation across
treatments.

F SFEM on Simulated Data

The table below presents the results from the Strategy Frequency Estimation Method
(SFEM) conducted both on the actual data and data simulated according to the
IRL-SG model. When we simulate the data, all individuals in all treatments have
the same parameters. We consider the 6 treatments first introduced in Dal Bó and
Fréchette (2011), which have later been extensively used in other papers. In total,
we have data from 1,312 individuals on these 6 treatments. As is common in the
literature, the SFEM is performed on the last third of the supergames in each session.

Table 12 shows that the estimated frequencies on the actual and simulated data
are similar. There are some slight deviations, in particular on the simulated data
DTFT is estimated with a slightly higher frequency and AllD with a slightly lower
frequency. Crucially, however, we see the same amount of heterogeneity of estimated
pure strategies in both the actual and simulated data.
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∆RD Data AllD DTFT TFT Grim Remaining
-0.316 Actual 0.698 0.256 0.042 0.0 0.004

Simulated 0.546 0.454 0.0 0.0 0.0
-0.105 Actual 0.557 0.329 0.034 0.031 0.049

Simulated 0.457 0.458 0.048 0.037 0.0
-0.066 Actual 0.463 0.284 0.108 0.061 0.084

Simulated 0.372 0.39 0.121 0.078 0.039
0.105 Actual 0.411 0.105 0.146 0.265 0.073

Simulated 0.303 0.246 0.184 0.182 0.085
0.145 Actual 0.088 0.103 0.313 0.289 0.207

Simulated 0.141 0.213 0.338 0.151 0.157
0.355 Actual 0.122 0.034 0.328 0.36 0.156

Simulated 0.071 0.083 0.321 0.301 0.224

Table 12: Estimated frequency of different pure strategies performed on the actual
data and on data simulated with the IRL-SG model.
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