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1 Introduction

A key assumption underlying classical economic theory is that people behave optimally

in order to maximize their subjective expected utility (Savage, 1954). However, a

large body of work in behavioral economics shows that human behavior systematically

deviates from this rational benchmark in many settings (Dhami, 2016). This suggests

that we can improve our understanding of economic behavior by incorporating more

realistic behavioral components into our models. While many of these deviations

are indeed systematic and show up in multiple studies, the estimated biases vary

considerably across studies and contexts. Apparent biases change or even disappear if

participants have opportunities to learn or if the details of the decision task change.

For example, this is the case with the endowment effect (Tunçel and Hammitt, 2014),

loss aversion (Ert and Erev, 2013), numerosity underestimation (Izard and Dehaene,

2008), and present bias (Imai, Rutter and Camerer, 2020).

In order to incorporate behavioral effects into theories with broader applications—

without having to run new experiments for each specific setting—we need a theory that

can account for this variation. That is, we need a theory that can help us understand

why—and predict when—people deviate from the rational benchmark. In this paper,

we propose such a theory based on the idea that people use simple decision procedures,

or heuristics, that are optimized to the environment to make the best possible use of

their limited cognitive resources and thereby maximize utility. This allows us to predict

behavior by analyzing which heuristics perform well in which environments. This paper

presents an explicit instantiation of this theory tailored to one-shot games and tests it

experimentally.

In situations where people play the same game multiple times against different op-

ponents, and hence there is an opportunity to learn, both theoretical and experimental

work suggests that Nash equilibria can often yield sensible long-run predictions (Fuden-

berg et al., 1998; Camerer, 2003). However, in experimental studies of one-shot games

where players don’t have experience with the particular game at hand, people seldom

follow the theoretical prediction of Nash equilibrium play (see Crawford, Costa-Gomes

and Iriberri, 2013, for an overview). Consequently, we need an alternative theory for

strategic interactions that happen only once (or infrequently).

The most common theories of behavior in one-shot games in the literature assume

that players perform some kind of iterated reasoning to form beliefs about the other

player’s action and then select the best action in response. This includes level-k (Nagel,

1995; Stahl and Wilson, 1994, 1995), cognitive hierarchy (Camerer, Ho and Chong, 2004),
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and noisy introspection models (Goeree and Holt, 2004). In such models, participants

are characterized by different levels of reasoning. Level-0 reasoners behave naively

by playing a uniformly random strategy. Level-1 reasoners best respond to level-0

behavior, while higher-level reasoners best respond to behavior based on lower-level

reasoning. In meta-analyses such as Crawford, Costa-Gomes and Iriberri (2013), Wright

and Leyton-Brown (2017), and Fudenberg and Liang (2019), variations of these iterated

reasoning models best explain human behavior.

All iterated reasoning models assume the basic structure of belief formation and

best responding to those beliefs. However, such a belief-formation and best-response

process is often inconsistent with empirical evidence. For example, Costa-Gomes and

Weizsäcker (2008) found that participants who were asked to state their beliefs about

how the opponent would play, often failed to play a best response to those beliefs.

Moreover, eye-tracking studies have revealed that the order in which participants attend

to payoffs in visually presented normal-form games is inconsistent with a belief-formation

and best-response process (Polonio, Di Guida and Coricelli, 2015; Devetag, Di Guida

and Polonio, 2016; Stewart et al., 2016). Furthermore, the estimated parameters of

iterated reasoning models often vary considerably across different data sets (Wright

and Leyton-Brown, 2017), behavior depends on aspects of the game that these models

do not take into account (Bardsley et al., 2010; Heap, Arjona and Sugden, 2014), and

there is evidence that games played previously have an effect on behavior, which the

above static models fail to capture (Mengel and Sciubba, 2014; Peysakhovich and Rand,

2016).

In this paper, we present a theory of human behavior in one-shot games based on

the rational use of heuristics (Lieder and Griffiths, 2017, 2020). That is, we assume

that people use simple cognitive strategies that flexibly and selectively process payoff

information to take good decisions with minimal cognitive effort. Concretely, we

assume that people use heuristics that maximize expected payoff minus cognitive cost.

Importantly, this optimization happens at the level of the environment; although people

might not choose the best action in a given game, they will learn which heuristics

generally work well (cf. procedural rationality in Simon, 1976).

Thus, our approach combines two perspectives on human decision-making, embracing

both the notion that human behavior is adaptive in a way that can be described as

optimizing and the notion that people use simple strategies that are effective for the

problems they actually need to solve. The key assumption of this resource-rational

analysis approach is that people use cognitive strategies that make optimal use of

their limited computational resources (Lieder and Griffiths, 2020; Griffiths, Lieder and
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Goodman, 2015; cf. Howes, Lewis and Vera, 2009; Lewis, Howes and Singh, 2014;

Gershman, Horvitz and Tenenbaum, 2015).

It is instructive to compare resource-rational analysis with two other approaches

to explaining observed deviations from perfectly rational behavior: the information-

theoretic and ecological rationality approaches. Like information-theoretic approaches

such as rational inattention (Matějka and McKay, 2015; Sims, 1998; Caplin and Dean,

2013; Hebert and Woodford, 2019; Steiner, Stewart and Matějka, 2017), the resource-

rational approach assumes that the costs and benefits of information processing are

optimally traded off. However, while information-theoretic approaches typically assume

domain-general cost functions (e.g., based on entropy reduction), the resource-rational

approach typically makes stronger assumptions about the specific computational pro-

cesses and costs that are likely to be involved in a given domain. In this way, the

resource-rational approach is more similar to the ecological rationality approach, a

framework based on the idea that people use computationally frugal heuristics, which

are highly effective for the kinds of problems that people actually encounter (Gigerenzer

and Todd, 1999; Goldstein and Gigerenzer, 2002; Todd and Gigerenzer, 2012). For

example, if the other players in an environment are using a wide variety of decision

strategies, then a heuristic that ignores the other players’ payoffs entirely may perform

best (Spiliopoulos and Hertwig, 2020). However, while proponents of ecological ratio-

nality explicitly reject the notion of optimization under constraints (e.g., Gigerenzer

and Todd, 1999, Ch. 1), optimization is at the heart of resource rationality. This makes

it possible to predict when people will use one heuristic rather than another (Lieder

and Griffiths, 2017) and even to discover novel heuristics (Lieder, Krueger and Griffiths,

2017; Krueger et al., 2022).

One important commonality between our approach and ecological rationality is the

recognition that the quality or adaptiveness of a heuristic depends on the environment

in which it is used. For example, in an environment in which most interactions are

characterized by competing interests (e.g., zero-sum games), a good heuristic is to look

for actions with high guaranteed payoffs. On the other hand, if most interactions have

common interests, a better heuristic might be to look for outcomes that would be good

for everyone (cf. Spiliopoulos and Hertwig, 2020). Our theory thus predicts that people

will use different heuristics in cooperative vs. competitive environments.

To test our theory’s prediction that people adapt their heuristics to the environment,

we conduct a large, preregistered1 behavioral experiment. In our experiment, partic-

ipants play a series of normal-form games in one of two environments characterized

1https://osf.io/hcnzg
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by different correlations in payoffs. In the common-interests environment, there is

a positive correlation between the payoffs of the two players over the set of strategy

profiles; i.e., outcomes that are good for one player tend to be good for the other as

well. In the competing-interests environment, the payoff correlation is negative; i.e., one

player’s loss is the other’s gain, which is essentially a soft version of zero-sum games.

Interspersed among these treatment-specific games, we include four comparison games

that are the same for both treatments. If the participants are using environment-adapted

heuristics to make decisions, and different heuristics are good for common-interests

and competing-interests environments, the participants should behave differently in the

comparison games since they are employing different heuristics. Indeed, this is what we

observe.

To provide further support for the claim that participant behavior is consistent with

an optimal tradeoff between the expected payoff and the cognitive cost, we define two

parameterized families of heuristics and cognitive costs that can make quantitative

predictions about the distribution of play in each game. However, rather than identifying

the parameters that best fit human behavior (as is commonly done in model comparison),

we instead identify the parameters that strike an optimal tradeoff between expected

payoffs and cognitive costs, and ask how well they predict human behavior. Although

we fit the cost function parameters that partially define the resource-rational heuristic,

these parameters are fit jointly to data in both treatments. Strikingly, we find that

this model, which has no free parameters that vary between the treatments, achieves

nearly the same out-of-sample predictive accuracy as the model with all parameters

fit separately to each treatment. Both the optimized and fitted versions of this model

predicted the modal action with an accuracy of 88%, compared to 80% for a quantal

cognitive hierarchy model.

In Section 2, we provide an overview of our theory and present a stylized example to

illustrate how resource-rational heuristics depend on the structure of the environment.

In Section 3, we present our experiment and model-free analyses, which demonstrate a

strong causal link between previous experience and current behavior in one-shot games.

In Section 4, we provide a more detailed description of the theory and introduce two

different parameterized models, an interpretable, low-parameter model, and a black-box

neural network model. Using these models, we demonstrate in Section 5 that the

differences in behavior can be accurately predicted out-of-sample by assuming that

participants use the optimal heuristics for the respective environments. In Section 5.4,

we compare our models to alternative models, including quantal cognitive hierarchy

and prosocial preference models, and show that our models provide better predictions
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of behavior than these alternatives.

2 Theory Overview and Stylized Predictions

The central tenet of our theory is that individuals use heuristics that maximize the

expected payoff minus the cognitive cost in a given environment. This can be summarized

in the following equation:

h∗ = argmax
hi∈H

EE
[
πi
(
hi(G), h−i(G

T )
)
− c(hi)

]
. (1)

Here, hi ∈ H is a heuristic, G is a game, and hi(G) is the distribution of play

produced by applying heuristic hi to game G. The optimal heuristic h∗ is the one

that maximizes the expected payoff πi
(
hi(G), h−i(G

T )
)

minus the cognitive cost c(hi),

where h−i(G
T ) gives the distribution of play by the opponent. The expectation is taken

with respect to an environment E , which defines a distribution over possible games G

and opponent heuristics h−i.

A key implication of this theory is that the heuristics we expect people to use depend

on the types of games and opponents they encounter frequently; that is, h∗i depends on

E . Below, we illustrate this idea with a simple example.

Consider two possible environments: one consisting entirely of coordination games

(where the players want to coordinate on the same action), and one consisting entirely

of constant-sum games (where the players’ interests are exactly opposed). In both

environments, all other players follow a heuristic where they pick the strategy with

the highest average payoff (level-1 in the language of level-k reasoning). Now consider

what you would do as the row player when faced with the following games from each

environment.

8, 8 0, 0

0, 0 9, 6

Coordination game

5, 4 2, 7

3, 6 3, 6

Constant-sum game

In the coordination game, the column player will select column 1 because 8 is

larger than 6; row 1 is thus the optimal play. In the constant-sum game, the column

player will select column 2 because 7 + 6 > 4 + 6; thus, row 2 is the optimal play.

Clearly, simulating the other player as we have done here will always lead to the optimal

choice. However, in each case, the optimal action could also be found by a simpler, less
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cognitively demanding heuristic. In the coordination game, the best action is the one

that produces the outcome with the highest minimum value for each player (we will

later call this the “jointmax heuristic”). In the constant-sum game, the best action is

the one that has the highest guaranteed payoff (the “maximin” heuristic).

The central claim of our theory is that people will use heuristics that identify good

actions with minimal cognitive cost. Critically, a “good” action is one that achieves

high payoffs on average across all the games a person encounters. Thus, if we take one

person, “Lucy,” and we put her in an environment where she repeatedly plays games

like the one on the left, she will learn to use the jointmax heuristic because it usually

selects the same action as simulation, but with less cognitive cost. If we put another

person, “Rodney,” in an environment where he repeatedly plays games like the one on

the right, he will learn to use the maximin heuristic for the same reason. Now consider

what actions each will select in a new game:

7, 7 0, 9

9, 0 4, 4

Prisoner’s dilemma game

Here, the second action strictly dominates the first, and so it has to be the choice of

a perfectly rational decision-maker. Rodney will play this action, as it is selected by the

maximin heuristic, which has performed well in his previous experience. Importantly, he

may choose this action without ever realizing that it dominates the other. By contrast,

Lucy will be likely to play the first, “incorrect” action, as it is selected by the jointmax.

She makes this mistake because identifying the outcome that is best for both players

is easy, and it has worked well for her before. Although she might have fared better

on this specific game if she had simulated the possible outcomes of each action, the

cognitive cost of such an approach would not be justified by the relatively small increase

in payoff across the full set of games she has played.

To summarize, the principled but costly approach of simulating the other player in

order to select one’s own action can sometimes be approximated by simpler heuristic

strategies. When this approximation is sufficiently accurate, a resource-rational agent

will use the heuristic to avoid the mental effort of simulation. But if we present the

unwitting agent with a new game that lacks the structure the heuristic was taking

advantage of, the agent will make predictable errors. This is the key intuition underlying

our behavioral experiment.
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3 Experiment

Our overarching hypothesis is that individuals choose actions in one-shot games using

heuristics that optimally trade off between the expected payoff and the cognitive cost.

Critically, as discussed above, this optimization occurs with respect to an environment

rather than a single game. This results in a central prediction: the action a player takes

in a given game will depend not only on the nature of that particular game but also on

the other games she has previously played. From this central prediction, we derived

four hypotheses, which we tested in a large, preregistered online experiment.

3.1 Methods

We recruited 600 participants on Amazon Mechanical Turk using the oTree platform

(Chen, Schonger and Wickens, 2016). Each participant was assigned to one of 20

populations of 30 participants. They then played 50 different one-shot normal-form

games, with each participant randomly matched to another player from their population

after each game.2

Each population was assigned to one of two experimental treatments, which deter-

mined the distribution of games played. Specifically, we manipulated the correlation

between the row and column players’ payoffs in each cell (cf. Spiliopoulos and Hertwig,

2020). In the common-interests treatment, the payoffs were positively correlated, such

that a cell with a high payoff for one player was likely to have a high payoff for the

other player as well. By contrast, in the competing-interests treatment, the payoffs were

negatively correlated, such that a cell with a high payoff for one player was likely to have

a low payoff for the other player. Concretely, the payoffs in each cell were sampled from

a bivariate Normal distribution truncated to the range [0, 9] and discretized such that

all payoffs were single-digit nonnegative integers.3 Examples of each type of treatment

game are shown in Tables 1 and 2.

5, 6 6, 4 5, 3

9, 4 5, 5 6, 7

2, 0 0, 1 6, 4

3, 4 5, 5 9, 7

4, 2 5, 7 5, 7

2, 4 2, 1 2, 3

9, 7 5, 9 7, 8

6, 7 9, 9 4, 6

6, 4 3, 1 6, 2

Table 1: Three games from the common-interests treatment.

2To facilitate running the experiment online, we used an asynchronous scheme in which participants
could play “against” an opponent who had played the game earlier. Participants were informed of this;
see Figure 8 in Appendix A.
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5, 5 6, 2 5, 3

5, 3 1, 8 8, 4

3, 6 7, 4 4, 6

2, 4 4, 4 4, 6

1, 7 2, 6 9, 1

7, 1 4, 8 8, 6

4, 5 1, 5 7, 1

2, 7 8, 5 5, 7

2, 6 8, 3 3, 9

Table 2: Three games from the competing-interests treatment.

For each population, we sampled 46 treatment games, with each participant playing

every game once. The remaining four games were comparison games, i.e., treatment-

independent games that we used to compare differences in the participants’ behavior

between the two treatments. The comparison games were played in periods 31, 38,

42, and 49. We located these comparison games later in the experiment so that the

participants would have time to adjust to the treatment environment first, while leaving

intervals between them to minimize the chance that participants would notice that

these games were different from the others they had played.

3.1.1 The Comparison Games

We selected four comparison games that we expected to elicit dramatically different

distributions of play in the two treatments. In these games, there is a tension between

choosing a row with an efficient outcome or choosing a row with a high guaranteed

payoff. For two of the games, the efficient outcome was also a Nash equilibrium (NE),

and for the other two games, the efficient outcome was not a NE.

8, 8 2, 6 0, 5

6, 2 6, 6 2, 5

5, 0 5, 2 5, 5

Comparison game 1

8, 8 2, 9 1, 0

9, 2 3, 3 1, 1

0, 1 1, 1 1, 1

Comparison game 2

4, 4 4, 6 5, 0

6, 4 3, 3 5, 1

0, 5 1, 5 9, 9

Comparison game 3

4, 4 9, 1 1, 3

1, 9 8, 8 1, 8

3, 1 8, 1 3, 3

Comparison game 4

Table 3: The four comparison games.

3The normal distribution is given by N((5, 5),Σ) with Σ = 5

(
1 ρ
ρ 1

)
, where ρ = 0.9 in the

common-interests treatment and ρ = −0.9 in the competing-interests treatment.
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The first game is a weak-link game, where all the diagonal strategy profiles are

Nash equilibria, but each has a different efficiency. The most efficient NE yields the

payoffs (8,8), but it is also possible to get 0. The least efficient equilibrium yields the

payoffs (5,5), but 5 is also the guaranteed payoff. The equilibrium (6,6) is in between

the aforementioned payoffs in terms of both risk and efficiency. The third row has the

highest average payoff and is the best response to itself, and so any standard recursive

reasoning model would predict (5,5) being the outcome.

The second comparison game is a normal prisoner’s dilemma game, with an added

dominated and inefficient strategy. In this game, strategy 2 dominates the other

strategies. However, we still expect strategy 1 to be played more often in the common-

interests treatment since, overall, it is a good heuristic to look for efficient outcomes in

that environment.

The third comparison game is a game with two NE, where one is the pure NE with

both players playing strategy 3, and the other is a mixed NE involving 1 and 2. This

game is constructed so that the row averages are much higher for strategies 1 and 2

than for 3, meaning that any level-k heuristic would result in strategy 1 or 2 being

played, while the NE yielding (9, 9) is much more efficient. Thus, there is a strong

tension between the efficient payoff and the guaranteed payoff.

In the fourth comparison game, the risky efficient outcome (8, 8) is not a NE. A

standard level-k player of any level higher than 0 would play strategy 3.

3.2 Model-free Results

We organize our results based on four preregistered hypotheses. The first two are

model-free and concern behavior in the comparison games; they are presented here.

The next two are model-based and concern behavior in the treatment games; these will

be presented later.

Our first hypothesis is that the treatment environment has an effect on behavior in

the comparison games.

Hypothesis 1. The distribution of play in the four comparison games will differ between

the two treatments.

This hypothesis follows from the assumption that people learn to use heuristics that

are adaptive within their treatment and that different heuristics are adaptive across

the two treatments. Figure 1 visually confirms this prediction, and Table 4 confirms

that these differences are statistically significant (χ2-tests, as preregistered).

9



8, 8 2, 6 0, 5

6, 2 6, 6 2, 5

5, 0 5, 2 5, 5

Common Interests

8, 8 2, 6 0, 5

6, 2 6, 6 2, 5

5, 0 5, 2 5, 5

Competing Interests

8, 8 2, 9 1, 0

9, 2 3, 3 1, 1

0, 1 1, 1 1, 1

 

8, 8 2, 9 1, 0

9, 2 3, 3 1, 1

0, 1 1, 1 1, 1

 

4, 4 4, 6 5, 0

6, 4 3, 3 5, 1

0, 5 1, 5 9, 9

 

4, 4 4, 6 5, 0

6, 4 3, 3 5, 1

0, 5 1, 5 9, 9

 

4, 4 9, 1 1, 3

1, 9 8, 8 1, 8

3, 1 8, 1 3, 3

 

4, 4 9, 1 1, 3

1, 9 8, 8 1, 8

3, 1 8, 1 3, 3

 

Human

8, 8 2, 6 0, 5

6, 2 6, 6 2, 5

5, 0 5, 2 5, 5

Common Interests

8, 8 2, 6 0, 5

6, 2 6, 6 2, 5

5, 0 5, 2 5, 5

Competing Interests

8, 8 2, 9 1, 0

9, 2 3, 3 1, 1

0, 1 1, 1 1, 1

 

8, 8 2, 9 1, 0

9, 2 3, 3 1, 1

0, 1 1, 1 1, 1

 

4, 4 4, 6 5, 0

6, 4 3, 3 5, 1

0, 5 1, 5 9, 9

 

4, 4 4, 6 5, 0

6, 4 3, 3 5, 1

0, 5 1, 5 9, 9

 

4, 4 9, 1 1, 3

1, 9 8, 8 1, 8

3, 1 8, 1 3, 3

 

4, 4 9, 1 1, 3

1, 9 8, 8 1, 8

3, 1 8, 1 3, 3

 

Model

Figure 1: Distribution of play in the four comparison games. Each panel shows the
joint and marginal distributions of row/column plays in a single game. The cells show
the players’ payoffs for the given outcome. The two columns to the left show the
actual behavior in the two environments, while the two columns to the right show the
predictions of the rational (optimized) metaheuristics.
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Frequencies
1 2 3 χ2 p-value

Comparison Game 1 98.39 p < .001
Common interests 193 53 54
Competeting interests 75 82 143
Comparison Game 2 22.08 p < .001
Common interests 160 139 1
Competeting interests 103 195 2
Comparison Game 3 61.75 p < .001
Common interests 40 73 187
Competeting interests 106 97 97
Comparison Game 4 91.36 p < .001
Common interests 78 173 49
Competeting interests 115 62 123

Table 4: χ2 tests for each comparison game. The results are significant at the preregis-
tered 0.05 level.

Inspecting Figure 1, we see that the distribution of play is not just different between

the two groups; it is different in a systematic way. In particular, players in the common-

interests treatment tend to coordinate on the efficient outcome, even in games 2 and 4,

where the efficient outcome is not a Nash equilibrium. We expected this divergence

in behavior when we constructed the comparison games, which motivates our second

hypothesis.

Hypothesis 2. The average payoff in the four comparison games will be higher in the

common-interests treatment than in the competing-interests treatment.

The comparison games were designed to create tension between efficiency and risk,

with one outcome having a high payoff for both players, but requiring each player to take

an action that could yield a very low payoff. We expected that the common-interests

players would be more likely to coordinate on the efficient outcome, and therefore

receive higher payoffs. The model makes this prediction because identifying mutually

beneficial outcomes is typically an effective heuristic in common-interests games, while

identifying high guaranteed payoffs is an effective heuristic in competing-interests games.

Table 5 confirms this prediction. The common-interests players had a higher average

payoff in all four comparison games, and the difference is statistically significant in each

case (at the preregistered level of p < .05).
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Treatment average payoff
Common interests Competing interests t-value p-value

Comparison game 1 5.09 3.64 6.851 p < .001
Comparison game 2 5.52 4.04 6.28 p < .001
Comparison game 3 5.00 4.31 2.86 p = 0.004
Comparison game 4 5.19 3.42 7.21 p < .001

Table 5: Two-sided t-tests for the difference in the average payoff between the two
treatments in the comparison games.

4 Theoretical Framework

We have seen that different environments lead to drastically different behavior in the

comparison games. While these results are suggestive of rational adaptation, they do

not directly imply that the participants are using heuristics in an optimal way. One

way to strengthen this claim is to show that one can accurately predict human behavior

by assuming optimal use of heuristics. In order to do this, we need to specify concrete

parameterizations of the space of heuristics H and the cognitive costs. But first, we

provide a more detailed description of the general theory.

4.1 General Model

We consider a setting where individuals in a population are repeatedly randomly

matched with another individual to play a finite normal-form game. We assume they

use some heuristic to decide what strategy to play.

Let G = 〈{1, 2}, S1 × S2, π〉 be a two-player normal-form game with pure strategy

sets Si = {1, . . . ,mi} for i ∈ {1, 2}, where mi ∈ N. A mixed strategy for player i is

denoted σi ∈ ∆(Si). The material payoff for player i from playing pure strategy si ∈ Si
when the other player −i plays strategy s−i ∈ S−i is denoted πi(si, s−i). We extend the

material payoff function to the expected material payoff from playing a mixed strategy

σi ∈ ∆(Si) against the mixed strategy σ−i ∈ ∆(S−i) with πi(σi, σ−i), in the usual way.

A heuristic is a function that maps a game to a mixed strategy hi (G) ∈ ∆(Si). For

simplicity, we will always consider the games from the perspective of the row player,

and consider the transposed game GT = 〈{2, 1}, S2 × S1, (π2, π1)〉 when talking about

the column player’s behavior.

Each heuristic has an associated cognitive cost4, c(h) ∈ R+. Simple heuristics,

4In general, the cognitive cost could depend on both the heuristic and the game. For example, it
might be more costly to apply a heuristic to a 5 × 5 game than to a 2 × 2 game. But since all our
games are 3× 3, we can dispense with that dependency.
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such as playing the uniformly random mixed strategy, have low cognitive costs, while

complicated heuristics involving many precise computations have high cognitive costs.

Since a heuristic returns a mixed strategy, the expected material payoff for player i

using heuristic hi when player −i uses heuristic h−i is

πi
(
hi(G), h−i(G

T )
)
.

Since each heuristic has an associated cognitive cost, the actual expected utility derived

from it is

ui (hi, h−i, G) = πi
(
hi(G), h−i(G

T )
)
− c(hi).

A heuristic is neither good nor bad in isolation; its performance has to be evaluated

with regard to some environment, in particular, with regard to the games and other-

player behavior one is likely to encounter. Let G be the set of possible games in the

environment, H be the set of heuristics the other player could use, and P be the joint

probability distribution over G,H. In the equations below, we will assume that G and

H are countable. An environment is given by E = (P,G,H). Thus, an environment

describes which game and other-player heuristic combinations a player is likely to face.

Given an environment, we can calculate the expected performance of a heuristic as

follows:

V (hi, E) = EE [ui (hi, h−i, G)] =
∑
G∈G

∑
h−i∈H

ui (hi, h−i, G) · P (G, h−i). (2)

We can also calculate the expected performance of a heuristic conditional on the specific

game being played as follows:

V (hi, E , G) = EE|G [ui (hi, h−i, G)] =
∑
h−i∈H

ui (hi, h−i, G) · P (h−i | G).

We can now formally define what it means for a heuristic to be rational (or optimal).

A rational heuristic h∗ is a heuristic that optimizes (2), i.e.,

h∗ = argmax
hi∈H

V (hi, E), (3)

or, in slightly expanded form,

h∗ = argmax
hi∈H

EE
[
πi
(
hi(G), h−i(G

T )
)
− c(hi)

]
. (4)
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That is, a rational heuristic chooses actions that yield high rewards for the games and

opponents one tends to encounter, while not being costly to evaluate; more specifically,

a rational heuristic achieves the best tradeoff between these two (typically, but not

always, competing) desiderata. We here also see that by varying the environment, E ,

we can vary which heuristics are optimal. In our experiment, we will manipulate the

distribution over games, thereby varying the predictions we get by assuming rational

heuristics.

One natural critique of this approach is that the problem of selecting an optimal

heuristic is actually much more complex than the problem of selecting an optimal action.

Critically, however, while the optimality of an action is defined with respect to a single

game, the optimality of a heuristic is defined with respect to an environment. Thus, it

is possible to for a player learn an optimal heuristic (but not an optimal action) even

if she has limited experience with the specific game being played. In Appendix E, we

show that a simple learning model can reproduce the performance of the optimizing

metaheuristic model.

4.2 Specific Parameterizations

We consider two parameterizations of H and c. Importantly, we don’t claim that either

parameterization perfectly matches the actual spaces of heuristics or cognitive costs

faced by human beings. Instead, they are constructed to be rich enough, and close

enough to actual cognitive costs and heuristics, to be able to capture the essence of

behavior. As we will see, the optimal heuristics found with both these parameterizations

give accurate predictions.

The first parameterization we call metaheuristics. It consists of three primitive

heuristics that together with a selection rule create the metaheuristic. The primitive

heuristics and selection rule are chosen based on existing models and descriptive evidence

on choice processes. This parameterization is intuitive and interpretable, but its design

involves many somewhat arbitrary researcher decisions.

The second parameterization, deep heuristics, makes much weaker assumptions

about the space of heuristics. This parameterization is based on the neural network

architecture for normal-form games proposed by Hartford, Wright and Leyton-Brown

(2016). It captures a much larger space of possible heuristics and thus removes the

researcher degrees of freedom that are a concern for the first parameterization (e.g., the

choice of primitive heuristics), at the cost of losing interpretability and some control

over the cognitive cost.
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4.2.1 Metaheuristics

To build a formal model of heuristics for one-shot games, we begin by specifying a few

general types of reasoning that such heuristics might employ: row-based reasoning, cell-

based reasoning, and simulation-based reasoning. For each of these types, we specify a

precise functional form with a small number of continuous parameters and an associated

cognitive cost function. The cognitive cost of a heuristic is a function of its parameters,

and the cost function is itself parameterized. Finally, we consider a higher-order heuristic,

which we call a metaheuristic, that selects among the candidate first-order heuristics

based on their expected values for the current game. We emphasize that we do not

claim that this specific family captures all the heuristics people might employ in a game.

However, we hypothesized—and our results confirm—that this family is expressive

enough to illustrate the general theory’s predictions and provide a strong quantitative

account of human behavior. Since this specific parameterization (metaheuristics) is not

the main focus of the paper, the details can be found in Appendix B.

Row Heuristics A row heuristic calculates a value, v(si), for each pure strategy,

si ∈ Si, based only on the player’s own payoffs associated with si. Formally, a row

heuristic is defined by the row-value function v such that

v(si) = f(πi(si,1), . . . , πi(si,mi)))

for some function f : Rm−i → R. The specific parameterization of f we consider goes

from min to max, passing by the mean, via a single parameter γ such that

vγ(si) =
∑

s−i∈S−i

πi(si, s−i) ·
exp [γ · πi(si, s−i)]∑
s∈S−i

exp [γ · πi(si, s)]
.

For example, γ = 0 implies that f is the mean function, corresponding to a level-1

strategy. γ → −∞ corresponds to the min function, and yields the maximin strategy.

More generally, the row heuristic captures a weighted mean of each row’s payoffs that

might overweight either good or bad outcomes.

Once the function v is specified, we assume that the computation of v is subject to

noise but that this noise can be reduced through cognitive effort, which we operationalize

as a single scalar ϕ. In particular, following Stahl and Wilson (1994), we assume that

the noise is Gumbel-distributed and thus recover a multinomial logit model with the
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probability that player i plays strategy si being

hsirow(G) =
exp [ϕ · v(si)]∑
k∈Si exp [ϕ · v(k)]

.

Naturally, the cost of a row heuristic is a function of cognitive effort. Specifically,

we assume that the cost is proportional to effort,

c(hrow) = ϕ · Crow,

where Crow > 0 is a free parameter of the cost function.

Cell Heuristics An individual might not necessarily consider all aspects connected

to a strategy but find a good “cell,” meaning a payoff pair (πi(si, s−i), π−i(si, s−i)). In

particular, previous research has proposed that people sometimes adopt a team view,

where each player looks for outcomes that are good for both players, and chooses actions

under the (perhaps implicit) assumption that the other player will try to achieve this

mutually beneficial outcome as well (Sugden, 2003; Bacharach, 2006). Alternatively,

people may engage in virtual bargaining, where each player selects the outcome that

would be agreed upon if she could negotiate with the other player (Misyak and Chater,

2014). Importantly, these approaches share the assumption that people reason directly

about outcomes (rather than actions) and that there is some amount of assumed

cooperation.

We refer to heuristics that reason directly about outcomes as cell heuristics. Based

on preliminary analyses, we identified one specific form of cell heuristic that participants

appear to use frequently: the jointmax heuristic, which identifies the outcome that is

most desirable for both players. Formally, the joint desirability of a cell is given by

vjointmax(si, s−i) = min {πi(si, s−i), π−i(si, s−i)}

and the probability of playing a given strategy, with cognitive effort ϕ is given by

hsijointmax(G) =
∑

s−i∈S−i

exp
[
ϕ · vjointmax(si, s−i)

]∑
(ki,k−i)∈Si×S−i

exp [ϕ · vjointmax(ki, k−i)]
.

This can be interpreted as applying a softmax to all possible outcomes and taking the

probability of each strategy to be the sum of the probabilities in the corresponding row.
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Cognitive cost is again proportional to effort, and so

c(hcell) = ϕ · Ccell,

where Ccell > 0 is a free parameter of the cost function.

Simulation Heuristics: Higher-level Reasoning Most previous behavioral mod-

els of initial play have a basic structure of belief formation and best response. Such

models assume that people first form a belief about which strategy the other player

will choose and then select the strategy with the maximal expected value given that

belief. In general, effective heuristics do not necessarily have this form; indeed, for many

parameter values, the row and cell heuristics described earlier might not be compatible

with any beliefs. However, explicitly forming beliefs and calculating the best responses

(following a simulation heuristic) may be a good decision-making strategy in some

situations.

If a row player uses a simulation heuristic, she first considers the game from the

column player’s perspective, applying some heuristic (a row, cell, or simulation heuristic)

that generates a distribution of likely play. She then plays a noisy best response to that

distribution.

The cognitive cost of a simulation heuristic is a combination of the cognitive cost of

the heuristic for the column player, a constant cost for updating the payoff matrix using

that belief (Cmul), and a cost that is proportional to the cognitive effort parameter in

the last step, as for a row heuristic,

c(hsim) = c(hcol) + Cmul + Crow · ϕ.

Notice that once the beliefs have been formed the last cost for taking a decision is

based on Crow since this process is the same as averaging over the rows as with a row

heuristic.

Selection Rule We don’t expect a person to use the same heuristic in all games.

Instead, they may have a set of heuristics, and choose which one to use in each situation

based on an estimate of the candidate heuristics’ expected values. We model this

selection process as a higher-order selection rule that selects among the first-order

heuristics described above. This selection rule allows the decision-maker to select from

a few different primitive heuristics, and hence the term “metaheuristic.”

Rather than explicitly modeling the process by which players select among the
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candidate heuristics, for example, by using the approach in Lieder and Griffiths (2015),

we use a reduced-form model based on the rational inattention model of Matějka and

McKay (2015). We make this simplifying assumption since it allows us to focus on the

central parts of our theory. This functional form captures the three key properties a

metaheuristic should have: (1) there is a prior weight on each primitive heuristic, (2) a

primitive heuristic will be used more on games in which it is likely to perform well, and

(3) this adjustment from the prior based on expected value is incomplete and costly

with an adjustment cost λ. See Equation 6 in the Appendix for details.

4.2.2 Deep Heuristics

A drawback of using explicitly formulated heuristics, as above, is that the results depend

on somewhat arbitrary decisions made by the researchers (in particular, the set of

primitive heuristics). To minimize the risk of our conclusions being driven by such

decisions, we also consider a nonparametric family of heuristics implemented with neural

networks. While not as interpretable as the metaheuristics, this new class includes a

much larger set of possible heuristics.
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Figure 2: Architecture of the deep heuristic.

We use a neural network architecture similar to the one developed by Hartford,

Wright and Leyton-Brown (2016), with some adjustments to allow for modeling cognitive
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costs. The architecture, illustrated in Figure 13, has two key properties specifically

adapted to finite normal-form games. First, the connectivity structure ensures that

predictions are invariant to relabeling of the strategies, thereby vastly reducing the

size of the parameter space (playing a similar role to convolution in computer vision).

Second, the architecture explicitly separates recursive reasoning (e.g., level-k) and direct

reasoning about the payoff matrix. This allows us to capture belief formation and best

response, as well as simpler heuristics like our row and cell heuristics. Furthermore, we

can assign a different cognitive cost to each type of reasoning. A detailed description of

the architecture is given in Appendix C.

5 Model-based Analysis

Having formally specified our theoretical framework, we can now take the models to

our experimental data. Specifically, we ask whether the behavioral differences found

in our experiment are consistent with the rational use of heuristics. To do this, we

first compare the predictive accuracy and payoffs achieved by models that are either

payoff-optimized or fit directly with the data; in particular, we confirm two preregistered

hypotheses generated by the general theory. Next, we compare our model to previously

proposed models, and demonstrate that our model yields more accurate predictions.

5.1 Model Estimation

We take an out-of-sample prediction approach to model comparison. Each data set is

divided into a training set on which model parameters are estimated and a test set on

which predictive performance is evaluated. We used the first 30 treatment games from

each population as the training set and the remaining 16 treatment games as the test

set. We chose this split so that we could test the predictions on the later games when

people would be most likely to be using a consistent decision strategy. We consider each

game to consist of two observations: the empirical distribution of play for each player

role (row and column). The games are sampled separately for each population but are

the same within a population, and we have 10 populations for each treatment. For

each treatment, we thus have 600 observations in the training set and 320 observations

in the test set. This separation was preregistered and can thus be considered a “true”

out-of-sample prediction.

We define separate environments for the two treatments using the actual games and

empirical distributions of play in all populations of the corresponding treatment. We
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thus define the common-interests environment, E+, by letting G+ be all the treatment

games played in the common-interests treatment, and letting the opponent’s behavior,

h+(G), be the actual distribution of play in G. Lastly, P is a uniform distribution over

all games in G+ and always returns h+ as the heuristic for the opponent. We define the

competing-interests environment E− correspondingly. Lastly, we divide the games into

the training games, i.e., G+
train, and test games G+

test.

The measure of the fit we use is the average negative log-likelihood (or, equivalently,

the cross-entropy), where a lower value means a better fit. If p is the observed

distribution of play for the row or column player role in some game, and q is the

predicted distribution of play from some model, the negative log-likelihood (NLL) is

defined as

NLL(q, p) = −
∑
s

ps · log(qs).

We define the total NLL of a metaheuristic m with cognitive costs C evaluated on

the common-interests training set E+
train as

NLL(m, E+
train, C) =

∑
G∈G+train

NLL(m(G, h+, C), h+(G)),

and analogously for the three remaining training and test sets. We write m(G, h+, C)

since the actual prediction of the metaheuristic m in a given game depends on the

performance of the different primitive heuristics, which in turn depend on the opponent’s

behavior, h+, and the cognitive costs, C, as given by Equation (6).

The behavior of the metaheuristic model depends on three factors: the consideration

set of possible primitive heuristics, the cognitive cost of those heuristics, and the prior

distribution for the selection rule. We assume that the consideration set includes one

of each type of primitive heuristic: a cell heuristic, a row heuristic, and a simulation

heuristic. The model thus has twelve free parameters: six that specify the behavior of

the primitive heuristics, four for the cognitive costs, and two for the selection rule’s

prior.

The cognitive cost parameters are fixed from the decision-maker’s perspective,

reflecting constraints imposed by the decision-maker’s cognitive abilities. We thus fit

the cost parameters to data. By contrast, the parameters of the heuristics and the

selection rule prior are under the decision-maker’s control. We consider two methods

for estimating the parameters of the heuristics: fitting them to the data, or optimizing

them such that they maximize expected utility. The latter method instantiates our

theory that people use heuristics in a resource-rational way. For a given set of cognitive
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cost parameters C = (Crow, Ccell, Cmul, λ), the fitted common-interests metaheuristic is

given by

mfit(E+
train, C) = argmin

m∈M
NLL(m, E+

train, C),

whereM is the space of metaheuristics we restrict our analysis to. The fitted parameters

thus capture the heuristics that empirically best explain human behavior.

The optimal common-interests metaheuristic, for cognitive cost C, is instead given

by

mopt(E+
train, C) = argmax

m∈M
V (m, E+

train, C) = argmax
m∈M

∑
G∈G+train

u(m,h+, G, C)

where u(m,h+, G, C) is the expected utility from employing metaheuristic m against

behavior h+ in game G with cognitive cost parameters C. The optimized parameters

thus identify the heuristics that objectively achieve the best cost-benefit tradeoff, given

the fitted cost parameters. The fitted and optimal metaheuristics for the competing-

interests environment are defined analogously.

Having defined the fitted and optimal heuristics with cognitive costs C, we now

turn to the question of how to estimate the cognitive costs. Since the participants are

drawn from the same distribution and are randomly assigned to the two treatments, we

assume that the cognitive costs are always the same for both treatments.

To estimate the costs, we find the costs that minimize the average NLL of the

optimized or fitted heuristics on the training data. Therefore

Cfit = argmin
C∈R4

+

NLL(mfit(E+
train, C), E+

train, C) + NLL(mfit(E−train, C), E−train, C),

and

Copt = argmin
C∈R4

+

NLL(mopt(E+
train, C), E+

train, C) + NLL(mopt(E−train, C), E−train, C).

Notice the crucial difference between the fitted and optimized metaheuristics. For the

fitted metaheuristics, we fit both the cognitive cost parameters and the heuristic parame-

ters to match actual behavior in the two training sets. For the optimized metaheuristics,

we fit only the cognitive cost parameters; the heuristic parameters are set to maximize

the payoff minus the cognitive cost. As a result, any difference between the optimal

common-interests metaheuristic and the optimal competing-interests metaheuristic is

entirely driven by differences in performance between the different heuristics in the two

environments.
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5.2 Results for Metaheuristics

Next, we consider our two model-based hypotheses regarding the metaheuristic model’s

ability to capture the difference in the participants’ behavior between the two treatments.

Hypothesis 3. Participants’ behavior will differ between the two treatments in a way

that the model can capture. Specifically, their behavior in the common-interests test

games should be better predicted by the common-interests metaheuristic than by the

competing-interests metaheuristics. Conversely, their behavior in the competing-interests

test games should be better predicted by the competing-interests metaheuristics than by

the common-interests metaheuristic. This should hold both for the fitted metaheuristics

and for the optimized metaheuristics.

Concretely, this hypothesis states that the following four inequalities should hold:

NLL(mfit(E−train), E−test) < NLL(mfit(E+
train), E−test)

NLL(mopt(E−train), E−test) < NLL(mopt(E+
train), E−test)

NLL(mfit(E−train), E+
test) > NLL(mfit(E+

train), E+
test)

NLL(mopt(E−train), E+
test) > NLL(mopt(E+

train), E+
test),

where the notation for Cfit and Copt is omitted for brevity.

In order to facilitate comparisons between treatments and between games, we use

“relative prediction loss”, that is, the difference in NLL between the model’s predictions

and the theoretical minimum NLL. Let y be the observed empirical distribution of

play in some game G. Then the lowest possible NLL in that game is NLL(y, y). The

relative prediction loss for model m in game G is thus given by5

NLL(m,G,C)−NLL(y, y).

We compute confidence intervals of the relative prediction loss over all the games in the

test set. Since we consider each game separately for the two different player roles, there

are 320 observations per test set.

Figure 3 shows the relative prediction loss on the test data in each treatment achieved

by each possible method of fitting the model. We clearly see that the models that were

5The resulting measure of performance is related to the completeness measure of Fudenberg et al.
(2022). However, since we have only fifteen participants per game and role, and there is randomness
in behavior, even the perfect model would not be able to get the exact distribution of play right.
Therefore, the theoretical minimum is truly theoretical.
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Figure 3: Predictive performance of the metaheuristics. Each panel shows the relative
prediction loss (average negative log-likelihood minus lowest possible value) of the
test data for one treatment (competing interests or common interests). Models are
fitted or optimized to either the competing-interests training games or the common-
interests training games. The error bars show 95% confidence intervals. The dashed
line corresponds to uniform random play, which assigns the same probability to each
action in each game.

trained on data from the same treatment as the test set outperform models trained on

the other treatment. This confirms Hypothesis 3.

An even more striking result is that the optimized metaheuristics achieve nearly the

same predictive performance as the fitted metaheuristics. That is, a model that uses the

same set of cognitive cost parameters in both treatments (with the heuristic parameters

set to optimize the resultant expected payoff-cognitive cost tradeoff) explains participant

data almost as well as the fully parameterized model, in which the heuristic parameters

are separately fitted to each treatment.

Not only do we confirm our hypothesis and show that the rational heuristic is a

strong predictor, but we also see that we capture most of the distance between the

uniform random play and the theoretical minimum NLL. Table 6 in the Appendix shows

the accuracy and average NLL for all models we consider in the paper. There, we see

that the average accuracy of the optimal metaheuristic is 88%, meaning that in 88% of

the games, the modal action is assigned the highest probability. It should also be noted

that in the games where the optimal metaheuristic makes an incorrect prediction, the

modal action is on average only played by 54% of the participants, while the modal
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Figure 4: Payoff performance of the metaheuristics. Each panel shows the regret
(best possible expected payoff minus true expected payoff) attained by models that
are trained and tested in different combinations of common-interests and competing-
interests environments. The dashed line shows the performance of uniform random
play.

action was played by 75% of the participants in all of the test games. Therefore, in the

games where the proposed model fails to assign the highest probability to the modal

action, play is quite even and hence difficult to predict.

Our final model-based hypothesis provides an additional test that the metaheuristics

that participants use are adapted to their treatment environment:

Hypothesis 4. The fitted heuristics estimated for a given treatment should achieve

higher expected payoffs on the test games for that treatment, as compared to the heuristics

estimated for the other treatment.

The logic of this hypothesis is that even if we do not assume that participants use

optimal heuristics, we should still see that the heuristics that best describe participants’

behavior in each treatment achieve higher payoffs in that treatment. As with prediction

loss, we use a relative performance measure that accounts for differences in maximal

payoff in the two treatments. Specifically, we quantify performance in terms of regret, the

difference between the expected payoff given the predicted behavior and the maximum

expected payoff in each game.

As illustrated in Figure 4, the results confirm our hypothesis. When testing on games

from either treatment, the models fitted to human behavior in the same treatment
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achieved lower regret than those fitted to the other treatment, although the difference

is larger for the common-interests games.

In Appendix D.2 we present results from pairwise tests of both Hypotheses 3 and 4.

We see there that all the differences in both relative prediction loss and regret are

significant at the 0.01 level.6

5.3 Results for Deep Heuristics

By applying the same estimation method to the deep heuristics as we did to the

metaheuristics, we can test whether Hypotheses 3 and 4 also hold for a completely

different specification of the space of heuristics and cognitive costs. In Figure 5, we see

that Hypothesis 3 holds for this specification as well: the models make more accurate

predictions for the treatment on which they were trained or optimized. We also see

that the predictive performance of the optimal heuristic is close to the fitted heuristic,

given optimized cognitive costs.

Figure 5: Predictive performance of the deep heuristics.

We can also test Hypothesis 4 in the same way by looking at the expected payoff

from the two different deep heuristics fitted to the behavior of the participants in the

two different treatments. As before, we see that the fitted models achieved lower regret

6In the preregistration, we did not specify a formal testing procedure for these differences and did
not originally include such a test in the paper. However, after discussions and presentations, it became
clear that such tests are sought after by readers, and we have therefore added them.
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Figure 6: Payoff performance of the deep heuristics.

in the treatment on which they were trained, again suggesting that the heuristics people

use are well adapted to their environment.

5.4 Model Comparison

In the previous sections, we have shown that the rational use of heuristics can explain

and predict people’s behavior in one-shot games, in particular how their behavior

depends on the previous games they have played. Next, we ask whether our proposed

theory provides a more accurate account of that behavior when compared to previously

proposed models. Specifically, we consider three alternative models: quantal cognitive

hierarchy (QCH), QCH with prosocial preferences, and noisy best-response to the true

distribution of play with prosocial preferences.

Quantal Cognitive Hierarchy. In previous comparisons between behavioral

models of one-shot games, variations of cognitive hierarchy models are usually the best

performing (Camerer, Ho and Chong, 2004; Wright and Leyton-Brown, 2017). In such a

model, we consider agents of different cognitive levels. In the quantal cognitive hierarchy

(QCH) model we consider here, a level-0 agent plays the uniformly random strategy,

playing each action with an equal probability. A level-1 player (logit) best responds to

a level-0. Finally, a level-2 player best responds to a combination of level-0 and level-1

players.7 The model has 4 parameters: the share of level-0 and level-1 players (which

7We found that adding higher levels of play did not improve predictive performance.

26



together determine the share of level-2 players), the sensitivity λ1 of level-1 players,

and the sensitivity λ2 of level-2 players.

Prosocial Preferences

We have attributed the difference in the participants’ behavior between the two

treatments to their learning different heuristics. However, this pattern of behavior

could be explained by a change not in their decision-making strategy but in their

underlying preferences. In particular, participants in the common-interests environment

may develop a sense of camaraderie that makes them care about the other players’

payoffs, while participants in the competing-interests environment may become jaded

or even spiteful, leading them to disregard the others’ payoffs.

To test this alternative explanation, we augmented the QCH model with a prosocial

utility function (Fehr and Schmidt, 1999; Bruhin, Fehr and Schunk, 2019), i.e.,

ui(si, s−i) = (1− αs− βr)× πi(si, s−i) + (αs+ βr)× π−i(si, s−i), (5)

where s indicates whether πi(si, s−i) < π−i(si, s−i) and r indicates whether πi(si, s−i) >

π−i(si, s−i). In other words, α determines how much player i values the payoff of player

−i when i gains less than −i, and β how much player i values the payoff of player −i
when i gains more than −i. This augmentation thus adds two parameters to the QCH

model, α and β. In this model, beliefs are formed using a standard QCH model, but the

payoffs are changed according to the prosocial preferences model (Equation 5) before

the last quantal best-response step.8 This model can account for differences in behavior

between the two treatments both by assuming different levels of prosociality and by

assuming different levels of reasoning or sensitivity in the QCH step.

Differing Beliefs

A second possible source of differing behavior across treatments is differing beliefs.

Since people behave differently in the two treatments, participants may form different

beliefs about what they expect the other player to do. In particular, participants in the

common-interests treatment may expect the other player to cooperate by selecting an

action with a jointly beneficial outcome, while participants in the competing-interests

treatment may expect the other player to select the safest action for themselves.

To test this account, we replace the recursively formed beliefs of QCH with the

correct (empirical) belief. This model thus plays a noisy best response to the actual

distribution of participants’ play. In this model, we additionally allow for prosocial

8We also considered another model combining QCH and prosocial preferences, in which the player
also has some beliefs about the other player’s prosociality that informs the beliefs formed during the
QCH steps. This didn’t make a meaningful difference in fit.
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Figure 7: Out-of-sample relative prediction loss for alternative models of behavior.
All the models are estimated on the training games of the same environment as the
test games. The error bars show a 95% confidence interval. Legend: QCH = quantal
cognitive hierarchy, Pro = prosocial preferences, EB = empirical beliefs.

preferences, resulting in a three-parameter model.

Results. In Figure 7, we compare the out-of-sample predictive performance of these

two alternative models and our two suggested specifications for the space of heuristics.

While the alternative models are estimated by fitting the parameters to match the

participants’ behavior, we also include the optimized versions of our two specifications.

For the common-interests games, it is clear that both the fitted and optimized

versions of our models outperform both the quantal cognitive hierarchy model and the

noisy best response with prosocial preferences (prosociality) model. The model with

both prosocial preferences and recursive reasoning (Pro+QCH) performs better, but

is still outperformed by three of our models (excluding the optimized deep heuristics).

For the competing-interests games, the prosociality model is still clearly performing

worst, but the other models all perform similarly. This suggests that the QCH model

predicts participants’ behavior better in the competing-interests environment than in

the common-interests environment. Taken together, our proposed models are better

at predicting behavior than alternative models, including the current best-performing

model in the literature (QCH).

We also see clearly in Figure 7 that the predictive performance of the metaheuristics

and fitted deep heuristics are very close, even though the deep heuristics encompasses a

much larger space of heuristics. This suggests that we have managed to capture the
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relevant space of heuristic strategies with our parameterization of the metaheuristics.

That is, the metaheuristic model is nearly “complete” in the sense of Fudenberg et al.

(2022).

6 Discussion

In the theory presented, we combine two perspectives. On the one hand we assume

that people use simple cognitive strategies to choose actions that are often inconsistent

with rational behavior in any given game. On the other hand, we don’t assume that the

specific heuristics used are predetermined or insensitive to incentives. On the contrary,

we assume that the heuristics people use are chosen resource-rationally, such that they

strike an optimal balance between expected payoffs and cognitive costs. We have seen

that by combining these two perspectives, we can predict behavior more accurately and

better understand the influence of the larger environment on behavior in a given game.

In particular, the proposed approach can help us predict when we should expect

behavior to coincide with rational behavior and when we might see systematic deviations

from a rational benchmark. Behavior will coincide with rational behavior if two

conditions are satisfied. Firstly, there has to exist a simple heuristic that leads to the

optimal action. Secondly, that heuristic has to perform well in the larger environment

so that the decision-maker can learn to use it. When there doesn’t exist a simple

and high-performing heuristic, or when the heuristic that normally works well leads

to the wrong decision, we will observe consistent deviations. This latter case is nicely

illustrated in our comparison games.

The optimal heuristic will focus on the features of the games that are often of

importance, but miss opportunities that are rare. Specifically, a person used to common-

interests games might miss an opportunity for personal gain at the other player’s expense

while a person used to competing-interests games might fail to notice an outcome that

is actually best for everyone.

Our findings relate to those of Peysakhovich and Rand (2016), who showed that

varying the sustainability of cooperation in an initial session of the repeated prisoner’s

dilemma affects how much prosocial behavior and trust is shown in later games, including

the one-shot prisoner’s dilemma. Our results provide a qualitative replication of this

idea. In particular, we found that putting people in an environment in which prosocial

heuristics (such as jointmax) perform well leads them to choose prosocial actions in the

comparison games and in some cases, even to select dominated options. By contrast,

putting people in an environment where prosocial actions often result in low payoffs
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prevents people from achieving efficient outcomes, even when they are Nash equilibria.

Consistent with our theory, Peysakhovich and Rand interpreted their findings as the

result of heuristic decision-making. We build on this intuitively appealing notion

by specifying formal models of heuristics in one-shot games that make quantitative

predictions. We also emphasize the influence of cognitive costs (in addition to payoffs)

on the heuristics people use.

Finally, we would like to emphasize an important difference between our theory and

previously proposed models of learning in games. Previous learning models have been

posed at the level of action; people learn which action to take in a specific (repeatedly

played) game (e.g. Jehiel, 2005; Grimm and Mengel, 2012). In contrast, in our theory,

learning happens at the level of reasoning ; people learn how to decide what to do

in a new game. We believe that this more abstract form of learning is more broadly

applicable in the real world, as it is rare that we ever encounter the exact same situation

twice (a feature that is captured by the randomly generated games in our experiment).

7 Conclusion

We have proposed a theory of human behavior in one-shot normal-form games based

on the resource-rational use of heuristics. According to this theory, people select their

actions using simple cognitive heuristics that flexibly and selectively process payoff

information; the heuristics people choose to use are ones that strike a good tradeoff

between the expected payoffs and the cognitive cost.

In a large preregistered experiment, we confirmed one of the primary qualitative

predictions of the theory: people learn which heuristics are resource-rational in a

given environment, and thus their recent experience affects the choices they make.

In particular, we found that placing participants in environments with common (vs.

competing) interests leads them to select the most efficient (or least efficient) equilibrium

in a weak-link game and to cooperate (or defect) in a prisoner’s dilemma.

Furthermore, we found that our theory provides a strong quantitative account of our

participants’ behavior, making more accurate out-of-sample predictions than both the

quantal cognitive hierarchy model and a model with prosocial preferences and a noisy

best response. Strikingly, we found that a resource-rational model, in which behavior in

both common-interests and competing-interests treatments is predicted using a single

set of fitted cost parameters (with the heuristic parameters set to optimize the resultant

expected payoff-cognitive cost tradeoff), achieved nearly the same accuracy as the fully

parameterized model in which the heuristic parameters are estimated separately to
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match the behavior in each treatment. Coupled with the overall high predictive accuracy

of the model, this provides strong evidence in support of the theory that people use

heuristics that optimally trade off between the expected payoff and the cognitive cost.

We also found similar results using an entirely different neural network-based family

of heuristics, indicating that these findings are robust to the parameterization of the

heuristics.

From a broader perspective, our theory speaks to a decades-long debate on the ratio-

nality of human decision-making. In contrast to classical models based on optimization

and utility maximization, which fail to capture systematic patterns in human choice

behavior, recent models instead emphasize our systematic biases, suggesting that we

rely on simple and error-prone heuristics to make decisions. In this paper, we hope

to have offered a synthesis of these two perspectives, by treating heuristics as things

that can themselves be optimized in a utility-maximization framework. We hope this

approach will prove to be a valuable step forward toward a more unified understanding

of economic decision-making.
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A Instructions for the experiment

Figure 8: The instructions one the first page when a participant joins the experiment.
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Figure 9: The participants have to complete three questions like this in a row in order
to be allowed to participate in the experiment.

Figure 10: In each round, the participant chose a row by clicking on it. Once it is
clicked it is highlighted and they have to click the next button to proceed.
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Figure 11: Once the matched participant chooses a column, either by making a decision
or by sampling from previous decisions in the game from the same population, the
result is shown.

B Complete Description of Metaheuristics

To exemplify the different heuristics, we will apply them to the following example game.

1 2 3
1 0, 1 0, 2 8, 8
2 5, 6 5, 5 2, 2
3 6, 5 6, 6 1, 1

Figure 12: Example normal-form game represented as a bi-matrix. The row player
chooses a row and the column player chooses a column. The first number in each cell is
the payoff of the row player and the second number is the payoff of the column player.

B.1 Row Heuristics

A row heuristic calculates a value, v(si), for each pure strategy, si ∈ Si, based only on

the player’s own payoffs associated with si. That is, it evaluates a strategy based only

on the first entry in each cell of the corresponding row of the payoff matrix (see Figure

12). Formally, a row heuristic is defined by the row-value function v such that

v(si) = f(πi(si,1), . . . , πi(si,mi)))
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for some function f : Rm−i → R. For example, if f is the mean function, then we have

vmean(si) =
1

m−i

∑
s−i∈S−i

πi(si, s−i),

which evaluates each strategy by the average payoff in the corresponding row of the

payoff matrix. Deterministically selecting arg maxsi v
mean(si) gives exactly the behavior

of a level-1 player in the classical level-k model.

If, instead, we let f be min, we recover the maximin heuristic, which calculates

the minimum value associated with each strategy and tries to choose the row with the

highest minimum value,

vmin(si) = min
s−i∈S−i

πi(si, s−i),

and, similarly, if we let f be max, we recover the maximax heuristic,

vmax(si) = max
s−i∈S−i

πi(si, s−i).

While one can imagine a very large space of possible functions f , we consider a

one-dimensional family that interpolates smoothly between min and max. We construct

such a family with the following expression:

vγ(si) =
∑

s−i∈S−i

πi(si, s−i) ·
exp [γ · πi(si, s−i)]∑
s∈S−i

exp [γ · πi(si, s)]
,

which approaches vmin(si) as γ → −∞, vmax(si) as γ →∞, and vmean(si) when γ = 0.

Intuitively, we can understand this expression as computing an expectation of the payoff

for si under different degrees of optimism about the other player’s choice of s−i. In

the above example game (Figure 12), the heuristic will assign the highest value to 1

(the top row) when γ is large and positive, to 2 when γ is large and negative, and to 3

when γ = 0. Notice that if γ 6= 0, the values associated with the different strategies do

not necessarily correspond to a consistent belief about the other player’s action. For

example, if γ is positive, the highest payoff in each row will be overweighted, but this

might correspond to a different column in each row; in the example game (Figure 12),

column 3 is overweighted when evaluating row 1 but downweighted when evaluating

rows 2 and 3. Although this internally inconsistent weighting may appear irrational, it

provides an extra degree of freedom that can increase the expected payoff in a given

environment without additional cognitive effort.

We assume that the computation of v is subject to noise, but that this noise can
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be reduced through cognitive effort, which we operationalize as a single scalar ϕ. In

particular, following Stahl and Wilson (1994), we assume that the noise is Gumbel-

distributed and thus recover a multinomial logit model with the probability that player

i plays strategy si being

hsirow(G) =
exp [ϕ · v(si)]∑
k∈Si exp [ϕ · v(k)]

.

We assume that the cost is proportional to the effort, i.e.,

c(hrow) = ϕ · Crow,

where Crow > 0 is a free parameter of the cost function.

B.2 Cell Heuristics

We refer to heuristics that reason directly about outcomes as cell heuristics. Based on

preliminary analyses, we identified one specific form of cell heuristic that participants

appear to use frequently: The jointmax heuristic, which identifies the outcome that is

most desirable for both players. Formally, the joint desirability of a cell is given by

vjointmax(si, s−i) = min {πi(si, s−i), π−i(si, s−i)}

and the probability of playing a given strategy with cognitive effort ϕ is given by

hsijointmax(G) =
∑

s−i∈S−i

exp
[
ϕ · vjointmax(si, s−i)

]∑
(ki,k−i)∈Si×S−i

exp [ϕ · vjointmax(ki, k−i)]
.

This can be interpreted as applying a softmax to all possible outcomes and taking the

probability of each strategy to be the sum of the probabilities in the corresponding

row. In the example game (Figure 12), the jointmax heuristic would assign the highest

probability to row 1 because the cell (1,3) with payoffs (8, 8) has the highest minimum

payoff.

The cognitive cost is again proportional to effort, and so

c(hcell) = ϕ · Ccell,

where Ccell > 0 is a free parameter of the cost function.

36



B.3 Simulation Heuristics: Higher-Level Reasoning

If a row player uses a simulation heuristic, she first considers the game from the column

player’s perspective, applying some heuristic that generates a distribution of likely play.

She then plays a noisy best response to that distribution. Let GT denote the transposed

game, i.e., the game from the column player’s perspective. Let hcol be the heuristic the

row player uses to estimate the column player’s behavior; then, hsim(G) is given by

hsirow =
exp

[
ϕ ·
(∑

s−i∈S−i
πi(si, s−i) · hs−icol (GT )

)]
∑

si∈Si exp
[
ϕ ·
(∑

s−i∈S−i
πi(si, s−i) · hs−icol (GT )

)] ,
where ϕ is the cognitive effort parameter. A simulation heuristic is thus defined by a

combination of a heuristic and an effort parameter (hcol, ϕ).

The cognitive cost for a simulation heuristic is calculated by first calculating the

cognitive cost associated with the heuristic used for the column player’s behavior, then a

constant cost for updating the payoff matrix using that belief (Cmul), and one additional

cost that is proportional to the cognitive effort parameter in the last step, as if it was a

row heuristic,

c(hsim) = c(hcol) + Cmul + Crow · ϕ.

Notice that once the beliefs have been formed and the beliefs have been incorporated,

the last cost for taking a decision is based on Crow since this process is the same as

averaging over the rows as for a row-heuristic.

B.4 Selection Rule

We model the selection of primitive heuristics using the rational inattention model

of Matějka and McKay (2015). While we don’t think about the underlying selection

process as inherently one of rational inattention, the rational inattention model captures

the key properties we expect from the selection rule: (1) there is a prior weight on each

heuristic, (2) a heuristic will be used more on games in which it is likely to perform

well, and (3) the adjustment from the prior based on expected value is incomplete and

costly.

Assume that an individual is choosing between n heuristics H = {h1, h2, . . . , hN}.
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Then the probability of using heuristic hn when playing game G is given by

P [{use hn in G}] =
exp [(an + V (hn, E , G))/λ]∑N
j=1 exp [(aj + V (hj, E , G))/λ]

=
pn exp [V (hn, E , G)/λ]∑N
j=1 pj exp [V (hj, E , G)/λ]

(6)

where λi is an adjustment cost parameter and an are weights that give the prior

probability of using the different heuristics, pn = exp(an/λi)∑N
j=1 exp(aj/λi)

.

A metaheuristic is defined by a tuple m = 〈H,P 〉 where Hi = {h1, h2, . . . , hN} is

a finite consideration set of heuristics, and P = {p1, p2, . . . , pN} a prior over those

heuristics. We can express the performance of a metaheuristic in an environment E ,

analogously to (2) for heuristics, as

V meta(m, E) =
∑
G∈G

∑
h∈H

V (hn, E , G) · pn exp [V (hn, E , G)/λ]∑N
j=1 pj exp [(V (hj, E , G))/λ]

· P (G). (7)

The optimization problem faced by the individual, subject to the adjustment cost λ,

is then to maximize (7), i.e., to choose the optimal consideration set and corresponding

priors,

m∗ = argmax
H∈Pfin(H)

argmax
P∈∆(H)

V meta (〈H,P 〉, E) ,

where Pfin(H) is the set of all finite subsets of all possible heuristics. In practice, this

is not a solvable problem when the consideration set of possible heuristics, H, is large.

Therefore, we will assume a small set of heuristics and jointly find optimal parameters

of those heuristics and priors P .

C Deep Heuristics

Our neural network architecture is based on that developed by Hartford, Wright and

Leyton-Brown (2016). The idea is to let every element of the input and hidden layers be

a matrix of the same size as the game, instead of a single value as is typical. Each cell

in those matrices is then treated in the same way. This ensures that the deep heuristic

is invariant to relabeling of strategies, as should be expected from any decision rule for

normal-form games.

Higher-level reasoning is incorporated by first having two separated neural networks,

representing a “level-0” heuristic for the row player and the column player separately,

and then possibly taking into account the thus formed beliefs about the column player’s
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Figure 13: Architecture of the deep heuristic.

behavior in separate “action response” layers. The different action response layers are

then combined into a response distribution. A heuristic that did not explicitly form

beliefs about the other player’s behavior would let ARR(0) be the output, a person who

applies a heuristic to estimate the opponent’s behavior and then best responds to it

would only use ARR(1), etc. The neural network architecture is illustrated in Figure

13.

C.1 Feature Layers

The hidden layers are updated according to

HR
l,k = φl

(∑
j

wRl,k,jH
R
l−1,j + bRl,k

)
HR
l,k ∈ RmR×mC

and similarly for HC . For the first hidden layer HR
0,i = HC

0,i = Fi, and so the two disjoint

parts have the same feature matrices, but different weights.

The feature matrices consist of matrices where each cell contains information

associated with the row or column of one payoff matrix. The payoff matrices for the

row and column players are denoted by UR and UC , respectively. More specifically, we
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Figure 14: Examples of input feature matrices.

calculate the maximum, minimum, and mean of each row and column for both payoff

matrices. Furthermore, F1 and F2 are the payoff matrices as they are, and lastly, we

have a feature matrix where each value is the minimum payoff that either one of the

players receives from the strategy profile. Below are three examples of such feature

matrices.

maxi U
R
i,1 maxi U

R
i,2 maxi U

R
i,3

maxi U
R
i,1 maxi U

R
i,2 maxi U

R
i,3

maxi U
R
i,1 maxi U

R
i,2 maxi U

R
i,3

 ,

maxj U
R
1,j maxj U

R
1,j maxj U

R
1,j

maxj U
R
2,j maxj U

R
2,j maxj U

R
2,j

maxj U
R
3,j maxj U

R
3,j maxj U

R
3,j



C.2 Softmax and Action Response Layers

After the last feature layer, a play distribution is calculated from each feature matrix in

the last layer. This is done by first summing over the rows (columns) and then taking

a softmax over the sums. The first action response layer is then given by a weighted

average of those different distributions. For example, the distribution SR1 ∈ ∆mR is

given by

SR1 = softmax

(∑
i

(HR
2,1)1,i,

∑
i

(HR
2,1)2,i, . . . ,

∑
i

(HR
2,1)mR,i

)
while the sums for the column player taken over the columns are given by

SC1 = softmax

(∑
j

(HC
2,1)j,1,

∑
j

(HC
2,1)j,2, . . . ,

∑
j

(HC
2,1)j,mC

)
.

The first action response distribution is then ARR(0) =
∑k2

l wRl S
R
l for wR ∈ ∆k2 ,

and similarly for the column player.

The ARR(0) corresponds to a level-0 heuristic, i.e., a heuristic where the column

player’s behavior isn’t explicitly modeled and taken into account. To do this, we

move to Action Response layer 1, and use ARC(0) as a prediction for the behavior of

the opposing player. Once the beliefs of the column player are formed, the ARR(1)
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calculates the expected value from each action, conditioned on that expected play, and

takes a softmax over those payoffs:

ARR(1) = softmax

(
λ
∑
j

UR
1,j · ARC(0)j, . . . , λ

∑
j

UR
mR,j
· ARC(0)j

)

As in the cognitive hierarchy model, the second Action Response layer, ARR(2),

forms a belief about the other player by taking a weighted average of the ARR(1) and

ARR(0) layers and computing a noisy best response to it:

ARR(2) = softmax

(
λ
∑
j

UR
1,j ·

(
γARC(0)j + (1− γ)ARC(1)j

)
, . . .

)

C.3 Output Layer

The output layer takes a weighted average of the row player’s action response layers.

This is the final predicted distribution of play for the row player.

C.4 Cognitive Costs

When the deep heuristic is optimized with respect to the received payoff, the cognitive

cost comes from two features of the network. Firstly, there is an assumed fixed cost

associated with simulating, which is then proportional to the weight given to ARR(1).

Secondly, it is assumed that more exact predictions are cognitively more costly. The

second cognitive cost is thus proportional to the reciprocal of the entropy of the resulting

prediction.

D Detailed Results

D.1 Accuracy and Prediction Loss

In Table 6 we see the accuracy (how often the modal action is assigned the highest

probability) and the average NLL of the different models.

D.2 Pairwise Tests

For Hypotheses 3 and 4 we can test significance with pairwise tests. For each of the

games in the test set, we compare the difference in either the prediction loss or the

payoff between the relevant models. For each game, we get two observations, one for
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Common Competing Total
Model Estimation Accu NLL Accu NLL Accu NLL

Deep heuristics Fitted 89.4% 0.593 85.3% 0.709 87.3% 0.651
Metaheuristics Fitted 88.4% 0.599 86.6% 0.715 87.5% 0.657
Metaheuristics Optimized 89.1% 0.598 86.6% 0.726 87.8% 0.662
QCH+Pro Fitted 85.3% 0.638 85.6% 0.722 85.5% 0.68
Deep heuristics Optimized 85.3% 0.636 85.0% 0.739 85.2% 0.687
QCH Fitted 82.2% 0.686 84.1% 0.737 83.1% 0.711
EB+Pro Fitted 80.9% 0.717 71.2% 0.838 76.1% 0.777

Table 6: Average accuracy and negative log-likelihood for different models. Here we
only report the models when estimated and evaluated on the same environments.

each role. For each of these comparisons, we perform both a t-test and a nonparametric,

Wilcoxon rank test. As can be seen in the tables below, all of these tests are significant.

Model Test set Estimation Difference t-test Wilcoxon
Metaheuristics Common Fitted -0.065 p < .001 p < .001
Metaheuristics Common Optimized -0.165 p < .001 p < .001
Metaheuristics Competing Fitted -0.058 p < .001 p < .001
Metaheuristics Competing Optimized -0.080 p < .001 p < .001
Deep heuristics Common Fitted -0.113 p < .001 p < .001
Deep heuristics Common Optimized -0.120 p < .001 p < .001
Deep heuristics Competing Fitted -0.118 p < .001 p < .001
Deep heuristics Competing Optimized -0.231 p < .001 p < .001

Table 7: Pairwise tests for differences in prediction loss in the test sets between
the models estimated on training data from the same vs. the different environment.
The prediction loss is lower for the model estimated on training data from the same
environment for all pairs.

In Table 9 we see a pairwise test for the difference in the predictive ability between

the optimized metaheuristic and the alternative models. Prosocial EB is a model with

prosocial preferences and correct beliefs. We see that the optimized metaheuristic model

is significantly better than the alternative models QCH, prosociality, and prosocial

QCH.

Considering pairwise comparisons of models for each treatment in isolation, we see

that the optimized metaheuristic makes better predictions than alternative models in

the common-interests treatment. For the competing-interests treatment, the difference

is not significant for either the QCH model with prosocial preferences or the standard

QCH model.
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Model Test set Estimation Difference t-test Wilcoxon
Metaheuristics Common Fitted -0.145 p < .001 p < .001
Metaheuristics Common Optimized -0.302 p < .001 p < .001
Metaheuristics Competing Fitted -0.083 p < .001 p < .001
Metaheuristics Competing Optimized -0.165 p < .001 p < .001
Deep heuristics Common Fitted -0.238 p < .001 p < .001
Deep heuristics Common Optimized -0.333 p < .001 p < .001
Deep heuristics Competing Fitted -0.276 p < .001 p < .001
Deep heuristics Competing Optimized -0.502 p < .001 p < .001

Table 8: Pairwise tests for differences in regret in the test sets between the models
estimated on training data from the same vs. the different environment. Regret is lower
for the model estimated on training data from the same environment for all pairs.

Model Estimation Difference t-test Wilcoxon
Deep heuristics Fitted -0.011 p = .003 p = .001
Metaheuristics Fitted -0.005 p = .079 p = .052
QCH+Pro Fitted 0.018 p < .001 p = .001
Deep heuristics Optimized 0.025 p < .001 p < .001
QCH Fitted 0.049 p < .001 p < .001
EB+Pro Fitted 0.115 p < .001 p < .001

Table 9: Pairwise tests for differences in prediction loss between the optimized meta-
heuristic model and the alternative models across both treatments.

Model Estimation Difference t-test Wilcoxon
Deep heuristics Fitted -0.004 p = .384 p = .194
Metaheuristics Fitted 0.001 p = .801 p = .373
Deep heuristics Optimized 0.038 p < .001 p < .001
QCH+Pro Fitted 0.040 p < .001 p < .001
QCH Fitted 0.088 p < .001 p < .001
EB+Pro Fitted 0.119 p < .001 p < .001

Table 10: Pairwise tests for differences in prediction loss between the optimized meta-
heuristic model and the alternative models for the common-interests games.

E Explaining Adaptation via Learning

In the main text, we assume that the participants manage to find rational heuristics

without going into the details about how that is done. Here, we show that a learning

model could explain this adaptation to rational metaheuristics.

We assume that all individuals arrive at the experiment with the same initial

metaheuristic m(· | θ(0)), where θ are the parameters of the metaheuristic, including

the parameters of both the primitive heuristics and the priors.
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Model Estimation Difference t-test Wilcoxon
Deep heuristics Fitted -0.017 p < .001 p = .001
Metaheuristics Fitted -0.011 p = .011 p = .059
QCH+Pro Fitted -0.004 p = .483 p = .619
QCH Fitted 0.010 p = .146 p = .062
Deep heuristics Optimized 0.013 p = .090 p = .151
EB+Pro Fitted 0.112 p < .001 p < .001

Table 11: Pairwise tests for differences in prediction loss between the optimized meta-
heuristic model and the alternative models for the competing-interests games.

For each experimental population ξ, the players play a sequence of (Gξ,t)
50
t=1, each

time with a single realized action of the other player. Given the observed behavior of

player −i, the utility in round t for player i is given by

u(m(· | θ), Gξ,t, s−i, c) = πGξ,t (m(Gξ,t | θ), s−i)− c(m(· | θ)),

where m(· | θ) is the metaheuristic with parameters θ, Gξ,t is the game played in round

t by population ξ, c is the cognitive cost function, and s−i is the action taken by the

other player.

After observing the action s−i taken by the other player, player i can calculate the

gradient with respect to the parameters to see how the metaheuristic used could have

been improved, i.e.,

∇θu(m(· | θ), Gξ,t, s−i, c).

A simple learning model is one where each individual changes the metaheuristic

used in the direction of the gradient after each round of the experiment, with some

step-size κ. We can write this as

θξ,i(t+ 1) = θξ,i(t) + κ∇θu(m(· | θξ,i(t)), Gξ,t, s−i, c).

In other words, after each game, the metaheuristic is moved in the direction that would

have yielded a higher utility in that game.

For simplicity, we consider a population-level model, rather than modeling the

behavior of each individual player separately. The behavior in round t is given by

θξ(t+ 1) = θξ(t) + κEs−i∼Pξ(·|Gξ,t) [∇θu(m(· | θξ,i(t)), Gξ,t, s−i, c)] ,

where Pξ (s−i | Gξ,t) is the empirical probability that s−1 is used in game Gξ,t. Thus,

after each game, the population parameters for the next round move in the average
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direction of improvement defined by the empirical behavior in that game.

In our estimation of the learning model, we use the costs estimated for the optimal

metaheuristics. To estimate this model we thus need a baseline heuristic, θ(0), and a

learning parameter, κ. To make the performance of this model comparable to that of

the other models, we estimate the common starting parameters θ(0) and the common

learning rate κ in order to minimize loss on the first 30 games of each population in

both treatments. We then predict the remaining 16 treatment games of each population

in both treatments.

Model Estimation Common Competing Both

Deep heuristics Optimize 0.636 0.739 0.687
Deep heuristics Fit 0.593 0.709 0.651
Metaheuristics Optimize 0.598 0.726 0.662
Metaheuristics Fit 0.599 0.715 0.657

Learning 0.605 0.724 0.664

Table 12: Out-of-sample NLL prediction loss.

In Table 12 we see that the performance of the learning model is comparable

to but slightly lower than the performances of the fitted models. In Table 13 the

expected payoffs in the test set games are shown for the learning model, the optimized

metaheuristics, the optimized deep heuristics, and relevant benchmarks. It is clear that

the expected payoffs from this learning model are similar to both the actual payoffs

and those of the optimization-based models.

Model Estimation Common Competing

Metaheuristic Optimize 6.69 5.43
Deep heuristic Optimize 6.65 5.45
Learning 6.68 5.38

Random 5.38 4.45
Human behavior 6.74 5.43
Maximum 7.17 5.95

Table 13: Out-of-sample expected payoffs.

In conclusion, this simple learning model appears to be a possible explanation for

how the participants come to use these near-optimal heuristics in our experiment with

simple adjustments of the heuristics used after each game.
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